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ABSTRACT 

This dissertation describes the design of an adaptive controller for single-input 

single-output (SISO) systems with guaranteed bounds on the transient response, and 

robustness with external disturbances and unmodeled dynamics. Developed from a 

current approach called “L1 adaptive controller”, we show that by adding two properly 

designed low pass filters at the input and at the estimator we can control the transient 

response and the sensitivity of the overall system to external disturbances and 

unmodeled dynamics.  Global stability of the overall adaptive system is mathematically 

proven under the assumption that the system is minimum phase (i.e., with the zeros of 

the transfer function in the stable region) and bounds of the systems parameters are 

known to the designer. 

The extension of this approach to non-minimum phase systems, such as 

systems with flexible appendages, is also considered. We show that a non-minimum 

phase plant augmented with a properly designed parallel system results in a minimum 

phase system. The augmenting system most easily comes from the inverse of a 

stabilizing Proportional-Integral-Derivative (PID) controller, designed to be least 

sensitive to parameter uncertainties. This approach is applied to a flexible arm in a 

testbed at the Naval Postgraduate School, called the Flexible Spacecraft Simulator 

(FSS), which emulates realistic conditions in space. Experimental results prove the 

effectiveness of the controller presented in this dissertation.   
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EXECUTIVE SUMMARY 

Adaptive control systems have been proposed to control systems with uncertain 

dynamics, widely varying under different operating conditions. They have been the 

subject of research for a number of years and stability has been established under ideal 

conditions.  In spite of the amount of research performed on this class of control systems, 

sensitivity to external disturbances and modeling errors together with poor transient 

response performance made engineers skeptical to their applications. In particular, the 

Model Reference Adaptive Control (MRAC) approach, which seems to be the most 

effective under ideal conditions, can easily become unstable in the presence of 

unmodeled dynamics not accounted by the system model. Where instability means a 

complete loss of the platform, such as in space applications, adaptive control is far from 

being considered a possible solution to control problems. 

In this dissertation, we address some of these issues, such as transient response 

and robustness in the presence of external disturbances and modeling errors. The 

proposed adaptive control system is derived from a recently introduced adaptive control 

approach called L1 Adaptive Control, with L1 referring to the norm of a certain operator 

affecting the tracking error.  We show that the addition of two simple low pass filters, 

one at the control input and one at the parameter estimator, eliminates high frequency 

components, which adversely affect both the transient response and the sensitivity to 

disturbances.  These two additional filters must be properly designed in order to 

guarantee stability and fast convergence. 

A major drawback of this proposed scheme, relative to more traditional adaptive 

systems, is the need for a nominal model for the system and bounds on the parameter 

uncertainties.  In other words, while transitional adaptive controllers assume the system is 

almost completely unknown (a black box), in the proposed scheme we assume the 

system to be within bounds (a gray box).  In most, if not all applications, the gray box 

assumption is more realistic, since the order of magnitude of the dynamics is understood. 

A further issue examined is the extension to non-minimum phase systems.  This 

problem is addressed by replacing the actual system with an “augmented” system, 



 xiv

implemented by adding a dynamic system in parallel.  It is easy to show that a non-

proper stabilizing compensator, like a proportional-integral-derivative (PID) controller, 

can be used by defining the inverse of its transfer function (thus proper) as the 

augmenting system.  The combination then becomes minimum phase, and it can be 

controlled by an adaptive controller.  Application to a flexible arm shows the 

effectiveness of this result, and testing at the Space Research and Design Center (SRDC) 

at the Naval Postgraduate School emulates a flexible robotics arm freely moving in space. 

Although all stability results are proven mathematically, a number of issues 

remain to be addressed. Specifically, further research is required to choose the optimal 

number of design parameters for best performance of the proposed system.  
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I. INTRODUCTION  

A. MOTIVATION AND BACKGROUND 

The particular feature, which distinguishes adaptive control systems from other 

control techniques, is the adaptive loop that provides real time estimates of the Plant 

Dynamics. 

A general structure of an adaptive controller is shown in Figure 1.  The system we 

want to control, called the plant, is modeled in terms of a set of parameters θ ∗ , unknown or 

partially known.  The goal of the controller is to estimate the plant’s parameters and adjust 

the controller’s parameters accordingly. 

 

 

 
Figure 1.1 Model Reference Adaptive Control. 

After [1] 
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As we can see in Figure 1, there are two loops. One is the standard feedback loop 

from the output y back to the input u .  The other is the loop from the input-output of the 

plant to the compensator parameters.  These two loops can interact with each other and 

cause instability in the system.  

This approach has been around for a number of decades, and stability under ideal 

conditions is well understood [1].  

In spite of the seemingly attractive feature of self-adjusting to time varying 

dynamics, researchers and engineers have always been skeptical of adaptive control and, as 

of today, it is not widely used.  There are a number of reasons for this skepticism. In 

particular:  

1. Because of internal modulation effects, fast adaptation produces a high 
frequency input.  This input excites unmodeled dynamics easily, and causes 
systematic instability.  Typical examples, from Rohrs [2], have shown that 
under very mild conditions of unmodeled dynamics that adaptive control 
system can easily become unstable.  

2. There is no guarantee on the bounds of the transient response of both input and 
output signals.  Literature review [2–80] shows that most results do not provide 
any guidelines on transient performance analysis or explain how to improve 
transient performance.  

During the past few years, there has been greater interest in adaptive control, as 

evidenced by its prevalence in the literature. A particular approach by Naira 

Hovakimyan [1] shows that the addition of a filtering term in the loop greatly improves 

both robustness and transient response behavior.  This approach is called “L1 adaptive 

controller”, since it guarantees an arbitrarily small L∞  bound on the transient response 

using the small gain theorem on the 1L  norms of the error operators [81].  It was 

developed for state feedback and then extended to input-output systems.  However, this 

extension does not follow the standard pole placement problem in classical adaptive 

approaches [82], and therefore, yields in a more general parameterization.  This results 

in an adaptive system for a restrictive class of linear systems, but with the capability of 

compensating for a wider class of nonlinearities. 

The results shown in [81, 83–88] have proved the effectiveness of this approach 

in terms of robustness and transient behavior. 
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In this dissertation, we address the problems of designing a class of Adaptive 

Control systems which yield fast adaptation, thus good transient response, and 

robustness to modeling errors. 

In addition, we show that this approach can be extended to non-minimum phase 

systems, where the current approaches are unable to stabilize the system.  Although this 

approach requires more knowledge about the system in order to control it, it is still 

attractive in cases where precise control is needed in the presence of model 

uncertainties.  The typical case we analyze is the precision control of a flexible arm in 

space. 

B. RESEARCH GOALS 

After introducing the properties of a general adaptive control system and the 

Model Reference Adaptive Control (MRAC) system, we examine the drawbacks of 

these systems and use L1 adaptive control to address them.  With the proposed L1 

adaptive controller, not only is the tracking error driven to zero, but the transient 

response is controlled, due to adaptation.  The final result is a controller which, under 

the assumption of low disturbances, yields fast adaptation to parameter variations. 

Another goal is to strengthen the robust ability of the adaptive system.  After 

proper choice of low pass filter, reference model, and other important elements, the 

proposed adaptive controller demonstrates an improvement in the system’s ability to 

deal with the problems of modeling errors, nonlinearities and external bounded 

disturbances.  

C. DISSERTATION ORGANIZATION 

This dissertation is organized as follows: Chapter II introduces the fundamentals of 

adaptive control systems, specifically the direct Model Reference Adaptive Control 

(MRAC) approach.  Rather than repeating the detailed mathematical derivations, which 

are found in the standard references, a simple first order example is presented, which has 

all the “flavor“ of a full theoretical presentation, but does not include the “fat”.  Also in 

this chapter, analytical arguments and computer simulations are used to demonstrate that 

fast adaptation results in high frequency signals and a possible loss of stability.  
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Additionally, using this same example, it is shown that the addition of a simple low pass 

filter in the loops guarantees good transient performance and better robustness to 

modeling errors. 

Chapter III discusses the general extension to a system of arbitrary degree.  

Typically, the plant in a MRAC system must be minimum phase.  This means that the 

plant to be controlled can be unstable, and that the zeros of its transfer functions must be 

in the left half side s-plane (in the “stability region”).  Additionally, the use of a priori 

knowledge of plant nominal dynamics and its uncertainties is discussed in the design of 

an adaptive controller, which is globally stable with a transient response having an 

arbitrarily small bound.  This response is obtained provided the effect of external 

disturbances is negligible. 

Chapter IV addresses the minimum phase assumption, where the adaptive system 

is extended to a class of non-minimum phase systems.  It is shown that a non-minimum 

phase system can be “augmented” to a minimum phase transfer function by adding a 

properly designed parallel system whose response is zero at steady state.  Further, it is 

shown that if the system is stabilizable by a standard proportional—integral—derivative 

(PID) controller, then the transfer function of the added system is just the inverse of the 

PID controller.  This is particularly attractive, since a properly design PID controller is 

generally robust in the presence of model uncertainties.  However, such a system has the 

drawback that its transfer function is not proper, due to the derivative action of the 

controller.  But, since its inverse is implemented in conjunction with the adaptive 

controller, its transfer function becomes strictly proper, and thus easily realizable.  This 

chapter also discusses an experimental implementation of this approach on a flexible arm 

in the satellite Research and Design Center (SRDC) at the Naval Postgraduate School 

(NPS).  In this experiment, vibrations due to highly damped flexible modes in the system 

are properly compensated for so that the position of the end effector quickly settles to the 

desired position. 
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Finally, conclusions and further research are presented in the final chapter of this 

dissertation.  Additionally, in order to better illustrate the proposed adaptive algorithm, a 

number of computer simulations and the results of applications are shown alongside the 

theoretical presentation.  

D. NOTATION 

In this dissertation, we define “ p ” the differential operator as 

( ) ( )px t x t=  

Also, the notation 

( )( ) ( )
( )

B py t u t
A p

=  

with ( )B p , ( )A p  polynomials in p , indicate the differential equation 

1 1
1 1( ) ( ) ( ) ( ) ( )N N N

N Np y t a p y t a y t b p u t b u t− −+ + + = + +  

with ia , jb  the coefficients of ( )A p , ( )B p , respectively. 

In all situations where the Laplace Transform exists, the differential operator p can be 

also interpreted as the Laplace variable s. 
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II. INTRODUCTION TO ADAPTIVE CONTROL 

A. PREFACE 

 According to Webster’s dictionary, to adapt means “to change (oneself), so that 

one’s behavior will conform to new or changed circumstances.”  This is exactly the goal 

of an adaptive control system, to self adjust to changing dynamics and environmental 

conditions.  A typical example is the design of a high-performance jet fighter or a fire 

helicopter [1].  They both operate over a wide range of speeds, altitudes, and weights 

(before and after loading water for the case of a fire helicopter) and their dynamics are 

nonlinear and time varying as described by 

                                                      
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

x t A t x t B t u t
y t C t x t D t u t

= +
= +

                                         (2.1) 

where 0(0)x x=  is assumed to be the initial state, and ( )A t , ( )B t , ( )C t , and ( )D t  are 

functions of the operating time t. 

As the system goes through different operating conditions, the dynamic model 

( )A t , ( )B t , ( )C t , and ( )D t changes considerably.  The adaptive controller structure 

consists of a feedback loop and a controller with adjustable gains as shown in Figure 2.1.   

      
Figure 2.1. Controller Structure with Adjustable Controller Gains. 

From [1] 

 

Controller Plant y  Input 
Command  

r  

Strategy for Adjusting 
Controller Gains 

r
y
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In this chapter, two different approaches to adaptive control systems are briefly 

introduced.  They are the Indirect Model Reference Adaptive Control (Indirect MRAC) 

and the Direct Model Reference Adaptive Control (Direct MRAC) approaches.  This is 

followed by a simple first order example to show the techniques to analyze convergence 

and stability.  Finally, the approach presented in this research is introduced for the first 

order example to demonstrate the main features of the proposed algorithm. 

B. MRC, INDIRECT MRAC, AND DIRECT MRAC 

MRAC is derived from the Model Reference Control (MRC) approach.  A linear 

time invariant (LTI), SISO plant of MRC is shown in Figure 2.2. 

 

 

 

 

 

                   

                   

Figure 2.2. Model Reference Control. 
From [1] 

 

In MRC, full knowledge of the plant dynamics is assumed.  The controller must 

be designed to meet the designer’s requirements, identified in the reference model, as the 

desired Input-Output (I/O) properties of the closed loop.  The goal of the MRC approach 

is to find a proper feedback control law so that the closed loop matches a reference model 

with transfer function Wm(p). 

The feedback controller ( )cC θ ∗  is designed so that all signals are bounded and 

the closed loop transfer function from ( )r t  to ( )y t  is equal to ( )mW p .  This implies that 

Reference Model 
         ( )mW p  

∑ 
Controller 

( )cC θ ∗  
Plant

( )G p

( )r t  

( )my t  

( )y t  

-

+

1( )e t  
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the object of the desired controller ( )cC θ ∗  is to drive the tracking error 

1( ) ( ) ( )me t y t y t= −  close to zero.  The requirements of the MRC are as follows: 

1. The zeros of the plant must be minimum phase. 

2. A good understanding of the plant and performance is required. 

If the zeros of the plant are non-minimum phase, the MRC may have an unstable pole 

zero cancellation thus causing instability.  When the plant parameters are not totally 

known, an adaptive system based on estimates of the plant parameters must be developed.  

The estimated parameters can be obtained by direct and indirect approaches. The 

resulting control schemes are known as MRAC.  A block diagram of a direct MRAC 

system is shown in Figure 2.3, and an indirect MRAC system is shown in Figure 2.4. 

The difference between a direct MRAC and indirect MRAC is that a direct 

MRAC updates the estimated controller parameter vector directly from input and output 

data.  In indirect adaptive control, the controller parameters are computed on the basis of 

the estimated plant dynamics.  In this dissertation, the approach is based on the direct 

MRAC.  Accordingly, the concept of the direct MRAC is discussed in the next section. 
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Figure 2.3. Indirect MRAC. 

After [1] 

 

 
Figure 2.4. Direct MRAC.  

From [1] 

 

Controller 
C( cθ ) 

Plant 
( )P θ ∗  

( )y t

Input 
Command  

( )r t  

( )u t

On-Line Parameter 
Estimation of θ ∗  

Calculations 
( ) ( ( ))c t F tθ θ=  

( )r t  

cθ  

Reference Model 
           ( )mW p  

∑
- 

+

1( )e t  

( )my t  

Controller 
C( cθ ) 

Plant 
( ) ( )c cP Pθ θ∗ ∗→

( )y t

Input 
Command  
  ( )r t  

()ut  

On-Line Parameter 
Estimation of cθ

∗  ( )r tcθ

Reference Model 
( )mW p  

∑
- 

+

1e  

( )my t  
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C. MODEL REFERENCE ADAPTIVE CONTROL 

1. Introduction of Model Reference Adaptive Control 

The general idea behind MRAC is to create a closed loop controller with 

estimated parameters that can be updated directly from input/output observations.  A 

standard, simple direct MRAC is shown in Figure 2.5. 

 

 

                                               

Figure 2.5. MRAC. 

 

As shown in Figure 2.5, the output of the system ( )y t  is compared to a desired 

response ( )my t  from a reference model.  The control parameters are updated based on 

the error ( )e t  between ( )y t  and ( )my t .  The goal of the MRAC is to update the 

estimated parameters ˆ( )tθ  so that the plant response matches the response of the 

reference model ( )mW p .  In what follows, a first order example of an adaptive control 

system is presented and the methodology for determining stability and convergence is 

shown. 

( )u t
+

- 

( )my t( )v t

( )e tPlant 

Reference 
Model 

( )mW p  

Control 

desired 
trajectory uncertainties

vibrations
noise

adaptive 

Reference input 

( )y t
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2. Theory of Model Reference Adaptive Control 

A simple example of a first order case is used to introduce the theory of MRAC.  

Assume a plant with transfer function 

                                            1( )pW p
p a

=
−

                                                     (2.1) 

where a  is unknown, and it is not necessarily positive or negative.  This implies that no 

assumption regarding the original plant’s stability is made.  Equation (2.2) depicts the 

state space model as 

 

 
( ) ( ) ( )
( ) ( ).

x t ax t u t
y t x t

= +
=

 (2.2) 

 
Let the reference model have dynamics 
 

 
( ) ( ) ( )
( ) ( )

m m m

m m

x t a x t v t
y t x t

= − +
=

 (2.3) 

 

where 0ma >  for stability.  The reference output signal )(tym represents the desired 

output the plant has to track.  The goal of the controller in MRAC is to drive the tracking 

error ( ) ( ) ( )me t y t y t= −  close to zero.  In order to do so, the plant dynamics represented 

by Equation (2.2) are expressed in terms of the reference model as 

  
 ( ) ( ) ( ) ( ) ( ).m mx t a x t a a x t u t= − + + +  (2.4) 
   
Further, the unknown parameter is defined as 
 
 
                                                             ma aθ = +                                                      (2.5) 
 
so that Equation (2.4) can be written as 
 
                                                   ( ) ( ) ( ) ( ).mx t a x t x t u tθ= − + +                              (2.6)   

This yields the structure of the control input, in terms of the model parameter θ , as  
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 ( ) ( ) ( )u t x t v tθ= − +  (2.7)  
 

which yields the desired closed dynamics  

 
 ( ) ( ) ( ).mx t a x t v t= − +  (2.8) 
 

If we know the parameter a  in equation (2.2), then we can calculate the control 

parameter in equation (2.5), and use the control input signal as in equation (2.7) to obtain 

the desired control behavior. However, since we do not know the system dynamics, we 

use a time varying estimated parameter ˆ( )tθ  is used to replace the true control parameter 

θ .  In this way, the control becomes 

 
 ˆ( ) ( ) ( ) ( ).u t t x t v tθ= − +  (2.9) 
 

Now, the problem is how to compute the estimated parameter ˆ( )tθ  based on input/output 

data.  In order to do this, the control input expression of Equation (2.9) is substituted into 

the plant model Equation (2.6) resulting in. 

( ) ( ) ( ) ( ) ( )mx t a x t t x t v tθ= − + +                                                  (2.10) 

where the parameter error ˆ( ) ( )t tθ θ θ= −  is the difference between actual value θ  and 

estimated parameter ˆ( )tθ .  Now if the tracking error ( )e t  is defined as 

( ) ( ) ( ) ( ) ( )m me t y t y t x t x t= − = −                                           (2.11) 

and Equations (2.10) and (2.3) are combined to relate the parameter error ( )tθ  with the 

tracking error ( )e t , the result is 

( )( ) ( ) ( ).me t a e t t x tθ= − +                                                  (2.12) 

In order to provide a viable estimate, the parameter ˆ( )tθ  is updated as follows 
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                                               ˆ( ) ( ) ( ) ( )t t x t e tθ θ γ= − =                                                   (2.13) 

where 0γ >  is an arbitrary constant.  The basis for this is shown as follows. 

Define the Lyapunov function  

                                    
22 11 1( ( ), ( )) ( ) ( )

2 2
V e t t e t tθ γ θ−= +                                           (2.14) 

Differentiating  V along the trajectories of the systems (2.12), (2.13), and (2.14),  we 

obtain 

           ( )( ) ( )1( ( ), ( )) ( ) ( ) ( ) ( ) ( ) ( )mV e t t e t a e t t x t t x t e tθ θ γ θ γ−= − + + −                           (2.15) 

which yields  

                                2( ( ), ( )) ( ) 0mV e t t a e tθ = − ≤                                              (2.16) 

By standard argument this shows that the estimated parameter is bounded and the 

error goes to zero [1]. 

In this example, we can also verify that an upper bound of the error ( )e t  can be 

easily determined.  In fact, since ( ( ), ( ))V e t tθ  is non increasing 

( (0), (0)) ( ( ), ( ))V e V e t tθ θ≥                                              (2.17) 

we can write from (2.14) that 

2 22 21 11 1 1 1(0) (0) ( ) ( ) .
2 2 2 2

e e t tγ θ γ θ− −+ ≥ +                           (2.18) 

By choosing zero initial condition (0) (0)mx x= , i.e., (0) 0e =  we obtain 

2 22 21 11 1 1 1(0) ( ) ( ) ( )
2 2 2 2

e t t e tγ θ γ θ− −≥ + ≥                  (2.19) 

for all 0t ≥ .  This shows an upper bound for the tracking error as 

2

2 (0)
( )e t

θ

γ
≤                                                            (2.20) 
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for all 0t ≥ .  From Equation (2.20), the relationship between tracking error ( )e t , 

adaptive gain γ , and initial parameter error (0)θ is found.  By increasing the gain γ , the 

maximum error can be made arbitrarily small, thus achieving any desired tracking.  

Figures 2.6 and 2.7 show simulations for different values of the adaptation gain γ . 

0 5 10 15 20 25 30 35 40
-4

-2

0

2
input u(t)

sec

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5
plant x(t) and model xm(t) outputs

sec

 

 plant x(t) output
model Xm(t) output

 
Figure 2.6. Response of Modeled MRAC Adaptive System with 50γ = . 
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 plant x(t) output
model Xm(t) output

 
Figure 2.7. Response of Modeled MRAC Adaptive System with 1000γ = .  

 

These simulations show that, by increasing the adaptation gain γ , the maximum 

tracking error decreases.  However, this comes with a price.  As shown in the simulation, 

the input signal exhibits a higher frequency component.  In the next section, these high 

frequency components will be discussed, including their excitation of unmodeled 

dynamics, which cause the system to lose tracking or to become unstable.  This is seen in 

Figures 2.8 and 2.9, where the addition of unmodeled poles at 20 *5p j= − +   and 

20 *5p j= − − , with transfer function 2

425
40 425p p+ +

 , causes the system to either 

becomes unstable or loose tracking  (Figure 2.9). 
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Figure 2.8. Response of Modeled MRAC Adaptive System with 50γ = . 
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Figure 2.9. Response of MRAC with Unmodeled Dynamics and 50γ = . 
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Figure 2.9 shows that, by increasing the adaptation gain γ  in the MRAC, the 

maximum tracking error may not decrease due to the unmodeled dynamics thus leading 

to loss of tracking.    

3. Adaptive Control with a Filtering Action 

The arguments presented in Chapter II. C.2 show that there between faster 

adaptation (large γ ) comes at the expenses of a high frequency transient response 

which can cause instabilities in the presence of modeling errors.  This can be seen  

from the input signal, repeated here for convenience as, 

 

                                     ˆ( ) ( ) ( ) ( ).u t t x t v tθ= − +           

 

Using the definition of parameter error ˆ( ) ( )t tθ θ θ= −  and its relation to the tracking 

error ( )e t  shown in Equation (2.12), the input signal can be expressed as 

 

                                     ( ) ( ) ( ) ( ) ( ).mu t x t v t e t a e tθ= − + + +                                        (2.21) 

 

While the error ( )e t  can be made arbitrarily small by increasing the adaptation gain γ , 

its derivative ( )e t  not only is not necessarily small, but it can become quite  large due to 

the high frequencies in the  transient response. 

A better overall response is obtained by introducing a Low Pass Filter with 

transfer function ( )FC s  at  the input signal, which yields  

                                       ( )ˆ( ) ( ) ( ) ( ) ( )Fu t C p t x t v tθ= − +                                            (2.22) 

This filter’s bandwidth should be larger than the reference model’s, so that the filter stops 

the high frequencies generated by the adaptive system without affecting the dynamics in 

steady state.  

The input signal ( )u t  can be written again in terms of ( )tθ  and ( )e t  as 

                               ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) .F F mu t C p x t v t C p e t a e tθ≅ − + + +                     (2.23) 
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The rightmost term shows the effect of the adaptation error, and it can be written as 

                                                      ( )( ) ( ) ( )Fu t p a C p e t= +                                        (2.24) 

where the transfer function ( ) ( )Fs a C s+  is proper (i.e., no differentiation) and stable.  

This implies that small values for ( )e t  also result in small values for ( )u t , and the 

controller is always close to an ideal controller with parameter θ . 

Figures 2.10 and 2.11 show this behavior.  The system is the same as the system 

presented in Chapter II. C.2, but it is observed that an increased adaptation gain γ  yields 

faster response, with better transient behavior.  This adaptive control with a filtering 

action approach has been called L1 adaptive control [81, 83–88]. 

0 5 10 15 20 25 30 35 40
-5

-4

-3

-2

-1

0

1

2
input u(t)

sec

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

2
plant x(t) and model xm(t) outputs

sec

 

 

plant x(t) output
model Xm(t) output

 
Figure 2.10. Response of L1 Unmodeled MRAC Adaptive System with 50γ = .  
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Figure 2.11. Response of L1 Unmodeled MRAC Adaptive System with 1000γ = . 
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III. L1 ADAPTIVE CONTROL FOR MINIMUM PHASE SYSTEMS 

A. OVERVIEW OF L1 ADAPTIVE CONTROLLER 

In this chapter, the adaptive control formulation is extended to a general SISO 

system.  In particular, it is shown that the plant can be parameterized in terms of the 

controller coefficients, so that they can be estimated directly from the input and output data. 

Further, the effectiveness of adding a LPF in the controller is addressed.  By proper choice 

of this LPF, it is shown that the magnitude of the transient response due to adaptation can 

be made arbitrarily small for both input and output signals.  The cost is a perturbation of the 

reference model, which is still globally stable. 

This chapter is organized as follows.  Model definitions are introduced in 

Chapter III. B.  Parameter estimation is given in Chapter III. C. Then, all properties and 

elements are combined to show the overall model in Chapter III. D.  In Chapter III. E, 

the L1 adaptive controller is analyzed under ideal conditions, without any disturbances 

or modeling error. Then, in Chapter III. F, analysis of the ideal case is extended to the 

conditions of external disturbance and unmodeled dynamics.  Finally, in Chapter III. G 

some examples are considered that compare MRAC systems and verify the theorem of 

L1 adaptive controller. After this, a deeper exploration of the properties is possible. 

B. MODEL DEFINITIONS 

In the SISO cases, consider a system with dynamics described by 

                                0 0
( )( ) ( ) ( )
( )

B py t k u t w t
A p

= +                                                  (3.1) 

where                                1
1( ) ...N N

NA p p a p a−= + + +                                                 (3.2) 

                                          1
1( ) ...M M

MB p p b p b−= + + +                                                (3.3) 

are monic.  Then the reference model is defined as 
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                                                   1( ) ( )
( )my t v t

D p
=                                                         (3.4)  

where 

                                             1
1( ) ...N M N M

N MD p p d p d− − −
−= + + +                                  (3.5) 

is a Hurwitz polynomial with degree 

                                                   ( ) ( ) ( )D p A p B p∂ = ∂ − ∂                                               (3.6)    

and ( )v t  is an arbitrary external bounded input. 

In the aforementioned discussion, and in most of the related literature, the 

assumptions on the plant are as follows: 

a. The degree of the numerator ( )B p , M, and the denominator ( )A p , N, are 

known. 

b. The sign of the high frequency coefficient 0k  is known (assume 0k  > 0 

without loss of generality). 

c. The high frequency coefficient 0k  and the parameters 1b ,…, Mb , 1a ,…, Na  

of the transfer function of the plant are unknown. 

d. The plant can be stable or unstable.  However, the numerator ( )B p  is 

Hurwitz, i.e., it has roots with negative real parts.  

1. Plant Parameterization 

Now, the goal is to parameterize the system in terms of the controller parameters. 

In particular, following the pole placement approach, and assuming the following state 

space model, as follows: 

                                              0( ) ( ) ( )

( ) ( )
p p

p

x t A x t B k u t

y t C x t

= +

=
                                       (3.7)      
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Using an observer and state feedback, the closed loop poles can be arbitrarily 

placed as shown in 

                               0

0

ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ( ) ( ) ( ).

p p p p p

p

x t A K C x t B k u t K y t

k u t L x t v t

= − + +

= − +
                       (3.8) 

If the controller gain is chosen so that  

                                                    det( ) ( ) ( )p p psI A B L B p D p− + =                                (3.9) 

and the observer gain as 

                                                     det( ) ( )p p psI A K C P p− + =                                     (3.10) 

with ( )P p  arbitrary, then the Hurwitz closed loop dynamics becomes  

                                    ( )( ) ( )
( ) ( )
B py t v t

D p B p
=                    

                                           1 ( ).
( )

v t
D p

=                                                                       (3.11) 

In order to determine a suitable plant parameterization, the controller in Equation 

(3.8) is written as  

     1 1
0 ( ) ( ) ( ) ( ) ( ) ( ).p p p p p p p p p pk u t L sI A K C B u t L sI A K C K y t v t− −= − − + − − + +   

This expression can also be written as  

                                             0
( ) ( )( ) ( ) ( ) ( )
( ) ( )

k p h pk u t u t y t v t
P p P p

= − − +                             (3.12)         

where   

                            
1

1 1 ...( )( )
( ) ( )

N
N

p p p p p
h p hh pL sI A K C B

P p P p

−
− + +

− + = =                          (3.13) 

                            
1

1 1 ...( )( )
( ) ( )

N
N

p p p p p
k p kk pL sI A K C K

P p P p

−
− + +

− + = = .                       (3.14) 
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Define the vectors of coefficients 

                                                 1[ ,..., ]T
Nh h h= ,                                                            (3.15) 

                                                 1[ ,..., ]T
Nk k k=                                                              (3.16) 

and the filtered signals as 

                                                 

1

2

1 ( )
( )

1

N

N

u

p
p

u t
P p

p
φ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                              (3.17) 

                                                

1

2

1 ( )
( )

1

N

N

y

p
p

y t
P p

p
φ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                              (3.18) 

then the plant model can be written as  

                               0
1( ) ( ( ) ( ) ( )).
( )

T T
u yy t k u t h t k t

D p
φ φ= + +                                       (3.19) 

Since the bounds on 0k  are assumed to be known as 

                                                  00 m Mk k k< ≤ ≤  

equation (3.19) can be expressed as 

                                ( )0
1( ) ( ( ) ( ) ( ) ( ))
( )

T T
m m u yy t k u t k k u t h t k t

D p
φ φ= + − + +              (3.20) 

In summary, the following statement can be made: 

Given the plant 

                                              0
( )( ) ( )
( )

B py t k u t
A p

=        
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and an arbitrary Hurwitz polynomial ( )D p  with degree ( ) ( )A p B p∂ − ∂ , the plant can be 

represented as  

                                      1( ) ( ( ) ( ))
( )

T
my t k u t t

D p
θ φ= +                                               (3.21) 

where 

                 
1 11 1( ) ( ), ( ), , ( ), ( ), , ( )

( ) ( ) ( ) ( )

N Np pt u t u t u t y t y t
P p P p P p P p

φ
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                  (3.22) 

and 2 1T NRθ +∈  is the set of controller parameters. 

It can be easily seen from Equation (3.21) that, in order to track the model 1
( )D p

, 

the controller has to be of the form  

                                              ( ) ( ) ( )T
mk u t t v tθ φ= − +                                                   (3.23) 

C. PARAMETER ESTIMATION 

In this section, the problem of estimating the parameters θ  from the plant 

dynamics  

                                 1( ) ( ( ) ( )) ( )
( )

T
my t k u t t w t

D p
θ φ= + +                                 (3.24) 

is addressed. In order to do so, let ( )EC p  be a transfer function such that the ( ) ( )EC p D p  

is proper and is of the form 

( )
( )

E
E L

E

C p
s
ω
ω

=
+

                                                 (3.25) 

with L N M≥ − .  Thus equation (3.24) can be arranged as 

0( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ) ( )) ( )T T
E E m m u y EC p D p y t C p k u t k k u t h t k t w tφ φ= + − + + +        (3.26) 

or 

                ( ) ( ) ( ) ( )( ( ) ( )) ( )T
E E m EC p D p y t C p k u t t w tθ φ= + +                         (3.27) 
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where ( ) ( ) ( ) ( )E Ew t C p D p w t= . If ( )Ew t  is set as the upper bound of ( )Ew t , then the 

parameter of equation (3.26) and (3.27) can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )T
E m E EC p D p y t k c t u t X t w tθ− = +                           (3.28) 

where 2 1T NRθ +∈  and ( ) ( ) ( )EX t C p tφ= . 

Notice that the parameter vector θ  appears in (3.28).  Therefore, in order to 

estimate it, call ˆ( )tθ  an estimate and define the error as  

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T
E m Ee t C p D p y t k c t u t t X tθ= − −                        (3.29) 

This can be easily related to the parameter error ˆ( ) ( )t tθ θ θ= −  

                                             ( ) ( ) ( ) ( ).T
Ee t t X t w tθ= +                                                   (3.30) 

Based on this equation, the parameter ˆ( )tθ  can be estimated as follows: 

2 22

( )ˆ ( ) ( ) ( ),
( ) ( )

i
i i

E

X tt t e t
w t X t

θ μ
σ

=
+

 0, , 2i N= …                  (3.31) 

 
with 
                                                0, if ,

ˆ ( )i i MAXtθ θ=  and ( ) ( ) 0iX t e t >  
                                  
                             ( )i tμ =        0, if ,min

ˆ ( )i itθ θ=  and ( ) ( ) 0iX t e t <                              (3.32) 
                                
                                                μ , otherwise 
 

and μ  > 0 arbitrary.  By this definition, the estimated parameters ˆ ( )i tθ  is bounded as 

shown in Figure 3.1. When the estimated reaches its maximum (minimum) value, 

adaptation is turned off ( ( ) 0i tμ = ) as long as it tends to increase (decrease). 
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Figure 3.1. The Figure of Estimated Parameter ˆ ( )i tθ . 
 
 

From the aforementioned information, it can be shown that for all 0t ≥  that 
 

  
a. ,min ,

ˆ ( )i i i MAXtθ θ θ≤ ≤  
 

b. ( )1( ) ( ) ( ) ( ) ( )T
Et X t t w t X tθ ε σ≤ +                                                     (3.33) 

 

c. 2( ) ( )t tθ με≤  

 
with 1( )tε , 2 ( )tε , such that for all t, T > 0 
 
                                                          
 
 
 
 
 

ˆ ( )i tθ  

θ  

MAXθ  MAXθ  

minθ  
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2

( )

2

tθ

μ
   if ( ) 0Ew τ =  for all τ                         (3.34) 

 ( )
2t T

i
t

dε τ τ
+

≤∫                                           

   
2

2

( )

2

t Tθ

μ σ
+     otherwise 

The proof is shown in Appendix A. 

In the absence of disturbances, ( ) 0Ew t =  for all 0t ≥ .  Therefore, Equation 

(3.31) can be restated as 

 

                                 2

( )ˆ( ) ( ) ( ),
( )
i

i
X tt t e t
X t

θ μ=  0, , 2i N= …                                         (3.35) 

with 
  
                                                0, if ,

ˆ ( )i i MAXtθ θ=  and ( ) ( ) 0iX t e t >  
                                  
                             ( )i tμ =        0, if ,min

ˆ ( )i itθ θ=  and ( ) ( ) 0iX t e t <                             (3.36) 
                                
                                                μ , otherwise 
 

In the case of no disturbance, in order to avoid singularities during 

implementation, the denominator 2( )X t  can be replaced with 2( )a X t+  for any 

arbitrary constant a , without loss of generality.  In developing the simulated model, 

the arbitrary constant is set to one, 1a = .  Thus, the denominator becomes 21 ( )X t+ . 

D. OVERALL MODEL 

As in the first order system example presented in Chapter II, the filter ( )FC p  is a 

low pass filter with a DC value of one, (0) 1FC = .  This filter is critical to the stability 

and performance of the overall system, and it is addressed in greater detail later in this 

section, including the criteria for its selection. 

Let the input of the adaptive control system be represented as 
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                   ( )ˆ( ) ( ) ( ) ( ) ( )T
m Fk u t C p t t v tθ φ= − +                                                (3.37) 

 

where ( )v t  is the external input and ( )tφ  is as previously described in Equation (3.22).  

The estimated parameters ˆ ( )i tθ  are computed, as shown in Equation (3.31). 

Now the control input in (3.37)  is  combined with the parameterized plant model 

in Equation (3.24) to obtain the closed loop dynamics model as 

            
( ) ( )

( ) ( )

1 ( )( )( ) ( ( ) ( ) ( )) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

FT TF

T T
m F F

C pC py t t t v t t w t
D p D p

k u t C p t t v t C p t

θ φ θ φ

θ φ θ φ

−
= + + +

= + −
                          (3.38) 

where 0
T T T

mk k h kθ ⎡ ⎤= −⎣ ⎦  is the true parameters vector.  Again ˆ( )tθ , the estimate, 

is computed as in Equation (3.31), and ˆ( ) ( )t tθ θ θ= −  is the parameter error. 

 

 

 

 

 

 

 

 

Figure 3.2. Dynamics Model of the Adaptive System. 

 

In order to better understand the global stability of the overall adaptive system, 

equation (3.38) can be represented by the dynamic model in Figure 3.2  where we define  

the error term  

( )v t  
( )refH p  

0 ( )w t

( )wH p

( )
( )

( )
y t

z t
u t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

( )e tθ

( )FC p  
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                                   ( )( ) ( ) ( ) ( )T
Fe t C p t tθ θ φ=                                           (3.39) 

 

as the effect of parameter error.  The overall model ( )refH p is obtained by combining 

equation (3.38) with the two plant parameterizations 

                                                           0
( )( ) ( )
( )

B py t k u t
A p

=  

and 

                                                    1( ) ( ( ) ( ))
( )

T
my t k u t t

D p
θ φ= +  

where 0m Mk k k≤ ≤  . This yields the dynamics model 

             
( )
( ) ( ) ( ) ( ) 0( ) ( ) ( ) ( ) ( )T

ref F w

y t
H p C p t t v t H p w t

u t
θ φ

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
                               (3.40) 

defined as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

T
yy yo F yw

T
m uy uo F uw

y t H p y t H p C p t t v t H p w t

k u t H p y t H p C p t t v t H p w t

θ φ

θ φ

= + + +

= + + +
                      (3.41) 

where 
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( ) ( )( ) ( )

( ) ( )
( )( )

( ) ( )( )
( )( )

( ) ( )

( ) ( )
( )

( ) ( )
( )

0

0

( ) 11 1
( ) ( ) 1

1
1 ( )

1 ( ) ( ) ( )1 1
( ) ( ) ( ) ( ) ( ) ( )1

1
1

( ) ( ) 1
1 ( ) ( )

( ) ( )
1

yy F
F

y
F

F
yw

F

u
F

F
uy

F

F
uw

F

A pH p C p
B p D p C p

H p
C p D p

C p A p k p k pH p
B p D p P p D p P p D pC p

H p
C p

C p D p A pH p
C p B p D p

C p D p A pH p
C p B

γ

γ
γ

γ

γ

γ

γ

⎛ ⎞⎛ ⎞
= − − ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

+
=

+

− ⎛ ⎞
= + − + −⎜ ⎟+ ⎝ ⎠

=
+

⎛ ⎞
= −⎜ ⎟+ ⎝ ⎠

=
+

( ) 1
( ) ( ) ( ) ( )

k p
p D p P p D p

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠

                  

                                                                                                                    (3.42) 

and 0 1
m

k
k

γ = −  in the interval 0 1M
MAX

m

k
k

γ γ≤ ≤ = − .  The Proof is shown in Appendix B. 

The system ( )refH p  in (3.40)–(3.42) represents a perturbation of the dynamic 

model (3.24) due to the presence of the Low Pass Filter ( )FC p . In fact, if we let 

( ) 1FC p →  for all p , i.e., we assume a filter with infinite bandwidth the terms in (3.42) 

yield ( neglect the disturbance terms for convenience ) 

 

          ( ) ( )( ) ( )
( ) 11 1 0

( ) ( ) 1yy F
F

A pH p C p
B p D p C pγ

⎛ ⎞⎛ ⎞
= − − →⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

                               (3.43) 

and 
 

                                  ( ) ( )
( )( )0

1 1 .
( )1 ( )y

F

H p
D pC p D p

γ
γ

+
= →

+
                                    (3.44) 

This yields 
 

                                        1( ) ( ( ) ( ) ( ))
( )

Ty t t t v t
D p

θ φ= +                                                (3.45) 
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which is the standard dynamic operation in the presence of parameter error ( )tθ .  For the 

input term, the analogy is slightly more complicated, but with ( ) 1FC p = , simple algebra 

yields 

                                         ˆ( ) ( ) ( ) ( ).T
mk u t t t v tθ φ= − +                                                     (3.46) 

 

Now the issue is how to choose the filter ( )FC s  so that the transformation 

( )refH s  is exponentially stable.  Examination of Equation (3.42) yields two issues: 

 
1. ( )( ) 1

1 FC jγ ω
−

+ must be stable for all values of γ  in the interval 
0 MAXγ γ≤ ≤ . 

 
2. ( )( ) 1

yyI H jω
−

− must be stable for all allowable γ , ( )D jω , ( )B jω , and 
( )A jω . 

 
This leads to the following two conditions. 

Condition 1. Let ( )FC p  be of the form 

 

                           
( )

0 1
0 1

0 1

( ) ( ) ( )
L

F LC p C p C p
p p
ω ω
ω ω

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

                                  (3.47) 

 

where L N M≥ −  the relative degree of the plant.  Also, let 1 0ω ω> .  From the Bode plot, 

shown in Figure 3.3, it is always possible to choose 1ω  and 0ω  with gain margin larger 

than the parameter uncertainty γ  . 

 

 

 

 



 33

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Bode Plot of Filter ( )FC p . 

 

For the stability of ( )( ) 1

yyI H p
−

− , recall the expression for ( )yyH p  

                           ( ) ( )( ) ( )
( ) 11 1

( ) ( ) 1yy F
F

A pH p C p
B p D p C pγ

⎛ ⎞⎛ ⎞
= − − ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

Since ( )A p , ( )B p , and ( )D p  are all monic polynomials and ( ) ( )B p D p  is 

Hurwitz by assumption, it can be seen that 

                                                      ( )lim 1 0
( ) ( )p

A p
B p D p→∞

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
                                         (3.48) 

Since ( )A p  and ( )( ) ( )B p D p  have the same degree, this implies that ( )1
( ) ( )
A p

B p D p
⎛ ⎞
−⎜ ⎟

⎝ ⎠
 is 

low pass.  At the same time, with ( )FC s  being a low pass filter with unity DC gain, this 

implies that ( )( )1 FC p−  is a high pass filter.  Therefore, the term 

( )FC ω  

( )FC ω∠

ω  

ω  

pω

0ω 1ω  

090−
 

0180−
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( )( ) ( )1 1
( ) ( )F
A pC p

B p D p
⎛ ⎞⎛ ⎞

− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 can be made arbitrarily small by increasing the 

bandwidth of ( )FC p .  This is summarized by the following condition: 

Condition 2.  For every positive constant Mα  we can always find 0ω  such that  

                               
0

( )max 1 1
( ) ( ) M

j A j
j B j D jω

ω ω α
ω ω ω ω

⎧ ⎫⎪ ⎪− = <⎨ ⎬+⎪ ⎪⎩ ⎭
                                 (3.49) 

for all ω . 

These two conditions are at the basis for choosing the filter 

                                      
( )

0 1

0 1

( )
L

F LC p
p p
ω ω
ω ω

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

                                              (3.50) 

given any arbitrary positive constant 1Mα < , and choosing 0ω  to satisfy Condition 2, 

( i.e., Equation (3.49)).  Then choosing 1ω , so that the gain margin is 

 
 

( ) 1F p M MAXdB dBdB
C jω α γ< − −                                           (3.51) 

 

where pω  is the phase crossover frequency of the filter, guarantees that both Conditions 1 

and 2 are satisfied. 

E. ADAPTIVE LOOP FEEDBACK FUNCTION Hθ  

The parameter error term in Figure  again defined as 

 

( )( ) ( ) ( ) ( )T
Fe t C p t tθ θ φ=  

 

This relates the parameter error ( )tθ  with the error ( )e tθ  and it represents a 

transformation : ( ) ( )H t e tθ θφ → .  
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Recall the key results concerning parameter estimation previously presented in 

Chapter III. C.  In the case of no external disturbances, the adaptation algorithm yields 

the following upper bounds 

 

                                                        1( ) ( ) ( ) ( )T t X t t X tθ ε≤                                  (3.52) 

and 

                                                       2( ) ( )t tθ με≤                                                    (3.53) 

where 

 

                                                        ( ) ( ) ( )EX t C p tφ=                                              (3.54) 

 
Both  terms 1( )tε  and 2 ( )tε  are in 2L  and their magnitudes are upper bounded as  

                                                          ( )
22

0

(0)

2i d
θ

ε τ τ
μ

∞

≤∫                                           (3.55) 

 
The goal of this is to show that all the bounds above (3.52)–(3.55) yields an upper 

of the error ( )e tθ  due to adaptation as 

 
                                                           

0
( ) ( ) sup ( )

t
e t tθ

τ
β φ τ

≤ ≤
≤                                        (3.56) 

where 
                                                            lim ( ) 0

t
tβ

→∞
=                                                        (3.57) 

and 

                                                           

1
4

0( ) L
E

t k ωβ
ω
⎛ ⎞

≤ ⎜ ⎟
⎝ ⎠

                                                (3.58) 

where Lk  is a constant depending on the relative degree L , 0ω  is the bandwidth of the 

filter ( )FC p , and Eω  is the bandwidth of the filter ( )EC p .  

 This is very important since, going back to Figure 3.2, equation (3.56) shows that 

the effect of adaptation ( )e tθ  is bounded by a feedback gain ( )tβ , which not only goes to 

zero (3.57), thus making the system globally asymptotically stable, but also its maximum  
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value (3.58) depends on the bandwidths of the two filters and it can be made arbitrarily 

small. The rest of this section is devoted to prove this result and, not surprisingly, is very 

technical in nature. 

The abounds (3.56)–(3.58) will be shown as sequence of facts. 

 
Fact 1: 
 

          

( )

( )( )

1 2

1

2

1 1
0

1
0

1 2
00

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) sup ( )

( ) ( ) ( ) sup ( )

E E

t

t

L E
t

C p C pe t e t C p e t e t
C p C p

e t t

e t t g t d

θ φ φ φ

φ
λ

φ
λ

ε φ λ

ε μ ε τ ω τ τ φ λ

≤ ≤

≤ ≤

⎛ ⎞ ⎛ ⎞
= = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≤

⎛ ⎞
≤ + −⎜ ⎟
⎝ ⎠

∫

                                   (3.59) 

 
where 1( )tε and 2 ( )tε are determined by Equations (3.33) and (3.34), and 
 

                                       ( ) ( )

1 1

00

1
1 ! !

L kL
x

L
k

xg x e d e
L k

ττ τ
−+∞ −

− −

=

⎛ ⎞
= = ⎜ ⎟− ⎝ ⎠

∑∫                             (3.60) 

 
Proof:  First, rearrange Equation (3.39) 
 

( ) ( )1
0 1 0

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
( )

T T
E

E

C pe t C p C p t t C p C p t t
C pθ θ φ θ φ

⎛ ⎞ ⎡ ⎤= = ⎜ ⎟ ⎣ ⎦⎝ ⎠
 

 
Then the error can be written as 
 

( ) ( ) ( ){ }1
0

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

T T T
E E E

E

C pe t C p t C p t C p t t t C p t
C pθ θ φ θ φ θ φ

⎛ ⎞ ⎡ ⎤= + −⎜ ⎟ ⎣ ⎦⎝ ⎠
 

If the term in the curly bracket is defined as ( )e tφ , this expression becomes 
 

                                            1( )( ) ( ).
( )E

C pe t e t
C pθ φ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                       (3.61) 

 
The term  ( )e tφ is the  sum of two terms 
 
                                               

1 2
( ) ( ) ( )e t e t e tφ φ φ= +  
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The first term can be written as 
 
                           ( )1 10 0( ) ( ) ( ) ( ) ( ) ( ) ( )T

Ee t C p t C p t C p e tφ φθ φ= =                                     (3.62) 

 
with 
 
                           

1
( ) ( ) ( ) ( ) ( ) ( ).T T

Ee t t C p t t X tφ θ φ θ= =                                                   (3.63) 
 
Additionally, the second term can be expressed as 
 
                   ( ) ( )2 20 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T

E Ee t C p C p t t t C p t C p e tφ φθ φ θ φ⎡ ⎤= − =⎣ ⎦         (3.64) 

 
with 
 
                       ( ) ( )2

( ) ( ) ( ) ( ) ( ) ( ) ( ) .T T
E Ee t C p t t t C p tφ θ φ θ φ= −                                       (3.65) 

 
From equation (3.33) we bound (3.63) as 
 
                               

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T
Ee t t C p t t X t t X tφ θ φ θ ε= = ≤                     (3.66) 

 
Since ( ) ( ) ( )EX t C p tφ= , the following expression can be written: 

                      ( ) ( )
00 0

( ) ( ) sup ( )
t

E E
t

X t c t d c d
λ

τ φ λ τ τ τ φ λ
+∞

≤ ≤

⎛ ⎞
≤ − ≤ ⎜ ⎟

⎝ ⎠
∫ ∫  

By the way we choose the filter ( )EC p  in (3.25), the impulse response ( ) 0Ec t ≥  

for all t, so the rightmost integral is (0)EC  which is equal to one.  Therefore, ( )X t  can be 

bounded as follows: 

                      
0

( ) sup ( ) .
t

X t
λ

φ λ
≤ ≤

≤            (3.67) 

 
Combine this with (3.66) to obtain the upper bound 
 
                        

1 1 1
0

( ) ( ) ( ) ( ) sup ( ) .
t

e t t X t tφ
λ

ε ε φ λ
≤ ≤

≤ ≤                                                (3.68) 

 
This shows the bound of the Fact, in (3.59). 
 
For the bound on 

2
( )e tφ , expressed in Equation (3.65), it is shown in Appendix C that 
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                         ( )
2

0

( ) ( ) ( )
t t

T
E

t

e t c t d dφ
λ

θ λ τ φ τ τ λ
−

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫ ∫                                           (3.69) 

 

The derivative ( )tθ  is upper bounded as in  (3.53), so that (3.69) above becomes 

 

                      
2

0

2 0
00

( ) ( ) ( ) sup ( )
t

E
tt

e t c d dφ
τλ

μ ε λ τ τ λ φ τ
+∞

≤ ≤−

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠
∫ ∫                                       (3.70) 

 

where again ( ) 0Ec t ≥  is the impulse response of the filter 
( )

( )
L

E
E L

E

C p
p
ω
ω

⎛ ⎞
= ⎜ ⎟
⎜ ⎟+⎝ ⎠

.  Then 

 

                    
( ) ( )( )

1

( )
1 !

E

L L
E

E L E
t t

c d e d g t
L

ω τ

λ λ

ω ττ τ τ ω τ
+∞ +∞ −

−

− −

= = −
−∫ ∫                                       (3.71) 

 
This shows the second inequality in (3.59), and Fact 1 is proved. 
 
                                                                                                                                      QED 
 
 
 
 
Fact 2:  The error signal  
 

                                                  1( )( ) ( )
( )E

C pe t e t
C pθ φ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                  (3.72) 

 
can be upper bounded as 
 
                                                 

0
( ) ( ) sup ( )

t
e t tφ

τ
β φ τ

≤ ≤
≤                                                  (3.73) 

 
where 
                                                  lim ( ) 0

t
tβ

→∞
=  

 

                           01( ) (0)
2 2L

E

t A ωμβ θ
ω μ

⎛ ⎞
≤ +⎜ ⎟⎜ ⎟
⎝ ⎠

, for all 0t ≥                                (3.74) 

 
and 
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                       ( )
1 2

1 2

1 1
2 21 1 1 2

1 22
1

0 0 0 1 20

!1 .
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kL L L
x

L k k
k k k

k kxA e dx
k k k
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−

+ +
= = =

⎛ ⎞ ⎛ ⎞+
⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑∑∫  

 
Proof: From Equation (3.59) 
 

                                                   1( )( ) ( )
( )E

C pe t e t
C pθ φ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                                           

 
with 
                                                   

1 2
( ) ( ) ( )e t e t e tφ φ φ= +  

 
Using the bounds in Equation (3.59) yields 
 
                                                   

1 1
0

( ) ( ) sup ( )
t

e t tφ
λ

β φ λ
≤ ≤

≤                                              (3.75) 

 
Where, using Schwartz inequality, 
 

     ( ) ( ) ( )0 0

1 1
2 222

1 0 1 0 1
0 0 0

( ) .
t

tt e d e d dω τ ω τβ ω ε τ τ ω τ ε τ τ
+∞ +∞

− − −⎛ ⎞ ⎛ ⎞
= ≤ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ ∫                          (3.76) 

 
This implies that 

                                    0

11
222

20
1

0 0

(0)
( )

2 2
t e ω τ

θωβ
ω μ

∞

−
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟≤

⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
                                        (3.77) 

And, therefore 

                          0
1

(0)
( )

2
t

θ ωβ
μ

≤                                                                (3.78) 

 
for all 0t ≥ .  Furthermore, since 

21( )t Lε ∈ , then 
 
                                        1lim ( ) 0

t
tβ

→∞
=                                                                          (3.79) 

 
Therefore, Equation (3.75) can be rewritten as  
 

1

0

0

(0)
( ) sup ( )

2 t
e tφ

λ

θ ω φ λ
μ ≤ ≤

≤  
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For the second part of ( )e tθ , recall from Equation (3.59) 
 
                                       

2 2
0

( ) ( ) sup ( )
t

e t tφ
τ

β φ τ
≤ ≤

≤                                                          (3.80) 

with 
                                        ( ) ( )2 2( ) .L Et t g tβ με ω= ∗                                                      (3.81) 
 
Since 

22 ( )t Lε ∈ , then 

2lim ( ) 0.
t

tβ
→∞

=  

Again using Schwartz inequality in the convolution integral in (3.81), we obtain 

an upper bound for 2 ( )tβ  

   ( ) ( )
1 1
2 22 2

2 2
0 0

( ) . (0) .
2L E L

E

t d g d A μβ μ ε λ λ ω λ λ θ
ω
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≤ ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫                         (3.82) 

 
Since 0

0 0( ) tc t e ωω −= , for 0t ≥ , it is easy to see that 
 
                                                   2 0 2( ) ( )* ( )t c t tβ β=                                                      (3.83) 
 
still yields the limit  
                                                            2lim ( ) 0

t
tβ

→∞
=                                                       (3.84) 

and the same upper bound 

      ( ) ( )
1 1
2 22 2

2 2
0 0

( ) (0) .
2L E L

E

t d g d A μβ μ ε λ λ ω λ λ θ
ω

+∞ +∞⎛ ⎞ ⎛ ⎞
≤ ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫                      (3.85) 

 
Combining Equations (3.78) and (3.85) yields the result in Fact 2. 
 
                                                                                                                                       QED 
 
As noted, the dimension of the adaptive gain, 0μ > , is inverse time or 1time− , as 

demonstrated in Equation (3.31).  As a consequence, μ
ω

 in Equation (3.74) is 

dimensionless. 

The bound on the term ( )e tφ  can be found in Equations (3.73) and (3.74) as 

 
                                                  

0
( ) ( ) sup ( )

t
e t tφ

τ
β φ τ

≤ ≤
≤                                                 (3.73) 
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                           01( ) (0)
2 2L

E

t A ωμβ θ
ω μ

⎛ ⎞
≤ +⎜ ⎟⎜ ⎟
⎝ ⎠

,  for all 0t ≥                              (3.74) 

 

From Equations (3.73) and (3.74), ( )e tφ  can be minimized by choosing the adaptive gain 

μ  in Equation (3.31) in terms of the parameters 0ω , Eω , and degree L  of the filter 

( )FC s .  And then, by straightforward differentiation the smallest upper bound is obtained 

 

                                                     0
1
2 E

LA
μ ω ω=                                                     (3.86)  

 
which yields the bound on the adaptive transformation ( )H pθ  
 

1
4

0

0
( ) sup ( )L

tE

e t kφ
τ

ω φ τ
ω ≤ ≤

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠
                                           (3.87) 

 

for some constant Lk , dependent only on the filter’s order and degree, L N M≥ − .  

This result shows how the upper bound on the transient response ( )e tθ due to adaptation  

depends in a fairly simple fashion on  the ratio of the bandwidths 0ω  and Eω   of the two 

filters ( )FC s  and ( )EC s  in the control and the estimation loops. As 0 0
E

ω
ω
⎛ ⎞

→⎜ ⎟
⎝ ⎠

 the effect 

of adaptation in both input and output signals tends to zero 

In the next section, we show this result formally, based on the what has been 

shown in this section, summarized below: 

 

               1( )( ) ( )
( )E

C pe t e t
C pθ φ=                                            (3.88) 

 
it can be shown that ( )e tθ  has the same bound as ( )e tφ  
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0

1
4

0
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( )

lim ( ) 0

t

L
E

t

e t t

t k

t

θ
τ

β φ τ

ωβ
ω

β

≤ ≤

→∞

≤

⎛ ⎞
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⎝ ⎠
=

                                             (3.89) 

 

F. STABILITY AND BOUNDEDNESS OF THE ADAPTIVE SYSTEM 

In this section, the concepts up to this point are combined and culminate in the 

main result of this dissertation. 

First define the vector ( )z t  

                                                            
( )

( )
( )

y t
z t

u t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                      (3.90) 

Assuming zero disturbances, from (3.40) and (3.89) we obtain 

 

                                                
( )( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )
ref Fz t H p e t C p v t

e t H p t
θ

θ θ φ

= +

=
                                (3.91) 

where ( )refH p  is exponentially stable, and ( )H pθ  is bounded by ( )tβ  in Equation 

(3.89).  Also, recall that ( )tφ  is a vector of filtered input and output signals, which can be 

written as 

                                                                ( ) ( ) ( )t p z tφ = Φ                                          (3.92) 

where ( )pΦ  is exponentially stable transformation in (3.17) and (3.18). 

The whole system, obtained by combining Equations (3.91) and (3.92), is shown 

in Figure 3.4. 
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Figure 3.4. Dynamics Model of the Adaptive System with No Disturbance. 

 

Since, ( ) 0tβ →  (Equation (3.89)), and ( )refH p  and ( )pΦ  are exponentially 

stable, the closed loop system is exponentially stable and all signals are bounded. 

Also, if the reference input and output signal are defined as  

                                                ( ) ( ) ( ) ( )ref ref Fz t H p C p v t=                                             (3.93) 

 

and ( ) ( ) ( )refz t z t z t= − , then 

                                                ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
ref

ref

z t H p e t

e t H p p z t z t
θ

θ θ

=

= Φ +
                                 (3.94) 

Each system, ( )refH p , ( )H pθ , and ( )pΦ , is Bounded Input and Bounded Output 

(BIBO ) stable and all terms can be bounded as 

                                              ( ) ,refz H p eθ∞ ∞∞
≤                                          (3.95) 

                                               ( ) ,p zφ
∞ ∞ ∞
≤ Φ                                             (3.96) 

                                                ,refz z z
∞ ∞ ∞
≤ +                                           (3.97) 

and 

                           ( )( ) ( ) .refe H p p z zθ θ∞ ∞ ∞ ∞ ∞
≤ Φ +                                 (3.98) 

( )v t  
( )refH p  

( )
( )

( )
y t

z t
u t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Φ  

( )tφ

( )H pθ  

( )e tθ

( )FC p  
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From these, it is easy to see that  

                            ( )( ) ( ) ( )ref refz H p H p p z zθ∞ ∞ ∞ ∞∞ ∞
≤ Φ +                 (3.99) 

which yields 

                            ( ) 11 refz K K z−

∞ ∞
≤ −                                                       (3.100) 

with 

                             ( ) ( ) ( )refK H p H p pθ ∞ ∞∞
= Φ                                          (3.101) 

Inequality (3.100) is valid only when the gain K is smaller than one as 0 1K< < . 

From the results above, recall 

                                            

1
4

0

0
( ) sup ( ) L

t E

H p t kθ
ωβ
ω∞

≤ ≤∞

⎛ ⎞
= ≤ ⎜ ⎟

⎝ ⎠
                        (3.102) 

where Lk  depends on the filter order only.  Therefore, it is observed that as 0 0
E

ω
ω

→ , the 

overall loop gain K goes to zero and, therefore, the error terms 

                                                          
( ) ( )

( )
( ) ( )

ref

ref

y t y t
z t

u t u t
−

=
−

                                           (3.103) 

are such that 

                                                       
0 0
lim sup ( ) ( ) 0
E

ref
t

y t y t
ω
ω

≤ ≤+∞→∞
− =                                   (3.104) 

and 

                                                       
0 0
lim sup ( ) ( ) 0.
E

ref
t

u t u t
ω
ω

≤ ≤+∞→∞
− =                                   (3.105) 

In other words, the maximum value of the transient response due to the adaptive 

controller tends to become arbitrary small. 
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In the next section, we show that computer simulations support the results 

presented above. 

G. EXAMPLES OF APPLICATION 

1. L1 Adaptive Control in Ideal Case (No Disturbance) 

Consider an unstable plant 

                                                   0
1( ) ( )

1
y t k u t

p
=

−
                                                   (3.106) 

where 01 4k≤ ≤ , and the reference model 

 

                                                   1( ) ( ).
2my t v t

p
=

+
                                                   (3.107)  

Then 

                              ( ) 1B p =  , ( ) 1A p p= − , ( ) 2.D p p= +                                         (3.108) 

First, the true coefficients are determined, assuming 0 3k =  as the true value of the 

parameter.  From ( )A p  and ( )B p , the related space state equation can be determined and 

is expressed as follow: 

                                              
( ) ( ) ( )

( ) ( )
p p

p

x t A x t B u t

y t C x t

= +

=
                                       (3.109)      

where                                                     

1

1

3

p

p

p

A

B

C

=

=

=

 

Following the steps mentioned above, the closed loop system is obtained 

                                        
( ) ( ) ( ) ( )

( ) ( )
p p p p

p

x t A B L x t B v t

y t C x t

= − +

=
                              (3.110) 

where controller gain 3pL =  is derived from Equation (3.9). 
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Let the observer be  

                                                    
ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))
ˆ ˆ( ) ( )

p p p

p

x t A x t B u t K y t y t

y t C x t

= + + −

=
                  

                                                                                                                                  (3.111) 

where ( ) 2P s p= +  and the observer gain 1pK =  is derived from Equation (3.10). 

 From Equations (3.15), (3.16), (3.22), and (3.23), the system can be represented 

as 

           ( )0 0( ) ( ) ( ) ( ) ( )T T T
mk u t k k h k t v t t v tφ θ φ⎡ ⎤= − − + = − +⎣ ⎦                            (3.112) 

 

where                                   
[ ]2 3 4.5

1 1( ) ( ) ( ) ( ) .
2 2

TT

T

t u t u t y t
s s

θ

φ

=

⎡ ⎤= ⎢ ⎥+ +⎣ ⎦

                        (3.113) 

Now, with 0 3k = , a sufficiently large value for 0ω  must be chosen.  Additionally, 

according to Condition 1 and Equation (3.49), the magnitude of the response of 

( )1
( ) ( )
A p

B p D p
⎛ ⎞
−⎜ ⎟

⎝ ⎠
must be less than 1.  The magnitude of the Bode Plot of  

( )1
( ) ( )
A p

B p D p
⎛ ⎞
−⎜ ⎟

⎝ ⎠
 is shown in Figure 3.5 and it is smaller than one  (negative dB’s) for all 

frequencies larger than than 2.5 rad/sec.  This can be used as a guideline to determine the 

bandwidth 0ω  of the filter ( )FC s .  
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Figure 3.5. The Bode Plot of ( )1
( ) ( )
A p

B p D p
⎛ ⎞
−⎜ ⎟

⎝ ⎠
. 

 

With a choice of 0 5ω = , the LPF becomes 0

0

5( )
5FC p

p s
ω
ω

⎛ ⎞
= =⎜ ⎟+ +⎝ ⎠

 and we 

must verify that Condition 2 is satisfied. Recall this condition 

 

( )
0

max max 1
MAX

yyH j
ω γ γ

ω
≤ ≤

<  

where 

( ) ( )( ) ( )
( ) 11 1

( ) ( ) 1yy F
F

A pH p C p
B p D p C pγ

⎛ ⎞⎛ ⎞
= − − ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

For a number of different realizations of γ , ( )yyH p  is plotted, as shown in 

Figure 3.6.  The simulation results conform to the requirement of Condition 2. 
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Figure 3.6. The Bode Plot of ( )yyH p  for 100 Plant Realizations. 

 

Next, if Eω  is chosen such that 0Eω ω> , and the degree L  of ( )EC p  is guaranteed to 

meet L N M≥ − , then ( ) ( )EC p D p  will be proper. In this example, let  100Eω =  rad/sec, 

1L M N= = − , and, therefore, 

                                          100( ) .
( ) ( 100)

L
E

E L
E

C p
p p
ω
ω

= =
+ +

                                      (3.114) 

 

Since this case is implemented with no disturbances, ( ) 0Ew t = .  Figure 3.7 and Figure 

3.8 depict simulation results of the case without disturbances. 
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Figure 3.8. The Simulation Result of the Reference Output and Plant Output. 
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2. L1 Adaptive Control with Bounded Output Disturbance 

Consider a system 

                                                  0
1( ) ( )

1
y t k u t

p
=

−
         

where 00.5 3k≤ ≤ , and the reference model is 

                                                   1( ) ( )
1my t v t

p
=

+
                                                      

where 

                                                   ( ) 1.D p p= +                                                               

Then 

                              ( ) 1B p =  , ( ) 1A p p= −  , ( ) 1D p p= +                                          (3.115) 

Assuming 0 2k =  as the true value, the controller can be expressed as 

                     0

( )
0.5 ( ) ( ) ( ) ( )T T T

m u

y

u t
u t k k h k v t t v tφ θ φ

φ

⎡ ⎤
⎢ ⎥⎡ ⎤= − − + = − +⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

               (3.116)  

 

where                                         
[ ]0.5 2 6

1 1( ) ( ) ( ) ( )
5 5

TT

T
Tt u t u t y t

p p

θ

φ

=

⎡ ⎤
= ⎢ ⎥+ +⎣ ⎦

                 (3.117) 

 

In accordance with Condition 1 and Condition 2, terms are chosen as 0 5ω = , 

1 10ω = , 100Eω = , and 2 1L N M= ≥ − = .  As in the previous example, Figure 3.9 and 

Figure 3.10 show that the stability conditions are satisfied. 

With appropriate substitutions ( )FC p  and ( )EC p  can be expressed as: 
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( ) ( )

2
0 1

2
0 1

5 10( )
5 10

L

F LC p
p pp p
ω ω
ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ++ +⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

                                              2

100( )
( ) ( 100)

L
E

E L
E

C p
p p
ω
ω

= =
+ +
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Figure 3.10. The Bode Plot of ( )yyH p  for 100 Plant Realizations. 
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Figure 3.11 and Figure 3.12 show the results of this simulation. 
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Figure 3.11. The Simulation Result of the Control Input. 
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Figure 3.12 The Simulation Result of the Reference Output and Plant Output. 
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3. Example with Sensor Noise 

Consider a plant with transfer function 

                              0 0
( ) 1
( )

B pk k
A p p a

=
+

                                                          (3.118) 

where the parameters are within known bounds 

                                  2 0a− ≤ ≤ , 00.5 3k≤ ≤                                                  (3.119) 

Let the reference model be 

          1 1 .
( ) 1D p p

=
+

                                                                (3.120) 

First, the LPF, ( )FC p  is chosen and is of the form 

( )
0 1

0 1
0 1

( ) ( ) ( ).
L

F LC p C p C p
p p
ω ω
ω ω

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

                              (3.121) 

Again, we choose  2 1L N M= ≥ − = . From the bound on 0k , we obtain 

30 1 1 5
0.5

M
MAX

m

k
k

γ γ≤ ≤ = − = − =  and the Bode plot of ( )1
( ) ( )
A p

B p D p
⎛ ⎞
−⎜ ⎟

⎝ ⎠
 is shown in  

Figure 3.13 for a number of random realizations of the plant. 
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It can easily be seen that for 3ω >  rad/sec all realizations have magnitude smaller than 

one that required by Condition 1.  In this example, 0 5ω =  rad/sec is chosen so that 

Condition 1 holds for all realizations, and 1 10ω =  rad/sec so that the gain margin of 

( )FC p  is larger than 1020log 14MAX dBγ = .  This idea can be applied to the controller 

design. 

From Figure 3.14, the magnitudes ( )yyH p  of all realizations are found to be 

smaller than one required to satisfy Condition 2.  Both of these results guarantee the 

stability of ( )refH p  in Equation (3.40) for all realizations of the plant. 

The responses of the inputs and output signals for this adaptive control system for 

two different values of Eω  are shown in Figure 3.15 and Figure 3.16.  To ensure a more 

realistic experiment, bandlimited random observation noise is added.  The simulation 

results are shown in Figures 3.17 and Figure 3.18.  Notice that, as predicted by the 

theoretical arguments in the previous section, the peak of the transient response decreases 

as the bandwidth Eω  increases.  The relationship between 0ω , Eω , and the transient 

performance is evident in Equation (3.87). 
1
4

0

0
( ) sup ( )L

tE

e t kφ
τ

ω φ τ
ω ≤ ≤

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠
                                          (3.122) 

 

In the next section, the upper bounds of parameters and transfer functions is discussed. 
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Figure 3.15. Frequency Response to Square Wave for 10Eω =  rad/sec. 
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Figure 3.16 Frequency Response to Square Wave for 100Eω =  rad/sec. 



 57

0 50 100 150
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
input with wE=10 rad/sec 

sec
0 50 100 150

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
output with wE=10 rad/sec

sec  
Figure 3.17. Frequency Response to Square Wave for 10Eω =  rad/sec with 

Bandlimited Random Observation Noise. 
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Figure 3.18. Frequency Response to Square Wave for 100Eω =  rad/sec with 
Bandlimited Random Observation Noise. 
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4. Example with Modeling Error 

In this case, the adaptive controller presented in the previous section is used, but 

the plant has unmodeled dynamics as represented by 

                                 0 2

1 200( ) ( )
30 200

y t k u t
p a p p

=
− + +

                             (3.123) 

In other words, the system is treated as a first order system, while in reality it has two 

extra poles affecting the high frequency only. It is well known that in this situation the 

adaptive controller can easily become unstable and sensitive to external disturbances.  

However, the proposed controller seems to retain stability and tracking properties.  

Simulation results are shown in Figure 3.19 and Figure 3.20. 
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Figure 3.19. Simulations with Unmodeled Dynamics 2
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IV. L1 ADAPTIVE CONTROL FOR NON-MINIMUM PHASE 
SYSTEMS 

A. MOTIVATION AND BACKGROUND 

The direct Adaptive Control technique presented in the previous chapters 

assumes that the system to be controlled is minimum phase, in the sense that the zeros of 

its transfer function have to be on the left half side of the s-plane.   

It is well known that non-minimum phase zeros present very important 

limitations on the performance of control systems.  Most important is the fact that, while 

poles can be moved by state feedback, zeros can be replaced only by pole-zero 

cancellation.  Since unstable pole-zero cancellation leads to unstable, uncontrollable, or 

unobservable modes, this operation is clearly not feasible. 

Non-minimum phase systems are very important in some applications and 

therefore cannot be ignored.  In particular, systems with flexible appendages most likely 

have zeros on the imaginary axis and are therefore non-minimum phase [89]. 

In this chapter, the adaptive control of this class of systems is discussed.  The 

non-minimum phase limitation is avoided by controlling an augmented plant obtained by 

the addition of a system in parallel to the plant to be controlled. This augmenting 

network has to be designed such that its output is zero in steady state, and the overall 

combination is minimum phase. 

Although the control presented for minimum phase systems is restrictive, it does 

exhibit desired tracking in the presence of wide plant uncertainties.  Several computer 

simulations show the effectiveness of such a controller. Furthermore, implementation on 

an experimental flexible mechanical arm, with uncertain dynamics, shows that this 

approach can be a viable technique for the control of this class of systems. 

 

B. FUNDAMENTAL PRINCIPLE AND ANALYSIS OF THE MODIFIED L1 
ADAPTIVE CONTROL 

Along similar lines as in the previous chapters, consider a Single Input Single 

Output (SISO) system with dynamics  



 62

                                               0
( )( ) ( ).
( )

B py t k u t
A p

=                                                          (4.1) 

with possible non minimum phase zeros. When this is the case, as shown in Figure 4.1, 

we augment it by a parallel system so that the combination system becomes 

 

                       0 1 0 11

1 1

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ).
( ) ( ) ( ) ( )

k B p A p E p k B p D pE py t u t u t
A p D p A p D p

⎛ ⎞ +
= + =⎜ ⎟
⎝ ⎠

           (4.2)   

 

 

 

 

 

  

 

Figure 4.1. New Closed Loop Dynamics with a Designed PID 1

1

( )
( )

E p
D p

. 

 

Now, the problem is to choose the augmenting transfer function 1

1

( )
( )

E p
D p

 to satisfy the 

following requirements: 

a.) the numerator of the combined system ( )1 0 1( ) ( ) ( ) ( )A p E p k B p D p+  is Hurwitz; 

b.) in steady state the output of the augmenting system goes to zero. 

To satisfy Requirement b.) when the input is a constant, E1(p) is expressed as 

                                                                  /
1 1( ) ( )E p p E p= i                                            (4.3) 

( )u t  

1

1

( )
( )

E p
D p

 

0 ( )
( )

k B p
A p

 ( )y t  
( )y t  
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so that the derivative action (the term “ p “) makes the steady state value zero when the 

input is a constant.  To satisfy Requirement a.), notice that the numerator of Equation 

(4.2) is the characteristic polynomial of the system shown in Figure 4.2. 

 

 

  

 

 

 
Figure 4.2. The Other Expression of the New Closed Loop Dynamics with a Designed 

PID. 

 

Therefore, the augmenting network 1

1

( )
( )

E p
D p

 must be such that its inverse 1

1

( )
( )

D p
E p

 yields a 

stable closed loop system.  Furthermore, since it is desired that 1

1

( )
( )

E p
D p

 is strictly proper, 

1

1

( )
( )

D p
E p

 will not be proper. 

A possible choice is that 1

1

( )
( )

D p
E p

 is a PID controller, with the integral action to 

satisfy Equation (4.3), and the derivative action to make its inverse proper.  For example, 

let a nominal plant be expressed as 

                   ( )( )
( )( )

2

0 0 04 2 2

1 1( ) 1
( ) 2 1.4142 1.4142

p j p jB p pk k k
A p p p p p j p j

+ −+
= =

+ + −
                        (4.4) 

Observe that there are two zeros located on the imaginary axis and therefore, it is non-

minimum phase. 

( )u t  
0 ( )

( )
k B p
A p

 ( )y t  1

1

( )
( )

D p
E p
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In order to make the system minimum phase, a PID compensator 1

1

( )
( )

D p
E p

 must be 

designed so that the system in Figure 4.2 is stable.  The augmented minimum phase 

system is shown in Equation (4.2). 

From Figure 4.1, the new output is shown to be  

                              1 1 1

1 1

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ).
( ) ( ) ( )

E p A p E p B p D py t y t u t u t
D p A p D p

− +
= + =                   (4.5)                           

Based on the requirements listed above, the degree of 1( )E p  has to be less than 1( )D p .  

Further, according to the final value theorem [89–90], the numerator 1( )E p  must have 

roots at its “zeros“.   Thus define 

                                                                  /
1 1( ) ( )E p p E p= i                                            (4.6) 

                                                     1
1 0 1( ) D D

DD p a p a p a−= + + +                                  (4.7) 

and choose 

                                                                      1( )E p p=                                                   (4.8) 

                                                               2
1( ) 0.1D p p p= + +                                          (4.9) 

Then the transfer function of the augmented system becomes  

                  
5 4 3 2

1 1
6 5 4 3 2

1

( ) ( ) ( ) ( )( ) 3 1.1 0.1
( ) ( ) ( ) 2.1 2 0.2

A p E p B p D pBB p p p p p p
AA p A p D p p p p p p

+ + + + + +
= =

+ + + +
         (4.10) 

with zeros at 

[ ]-0.3347 + 1.5021i -0.3347 - 1.5021i -0.1107 + 0.6114i -0.1107 - 0.6114i -0.1094p =
 

                                                                                                                                       (4.11) 

 

Which are strictly located in the LHS s-plane.  This leads to the augmented system  
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5 4 3 2

0 6 5 4 3 2

( ) 3 1.1 0.1( ) ( ) ( ).
( ) 2.1 2 0.2

BB p p p p p py t k u t u t
AA p p p p p p

+ + + + +
= =

+ + + +
            (4.12) 

Now, the reference model is chosen as in Equation (3.4): 

                                                   1( ) ( )
1my t v t

p
=

+
                                                       (4.13)  

where ( ) 1D p p= +  is a Hurwitz polynomial representing the desired closed loop 

dynamics. The degree of ( )D p  is N M− , which is equal to the relative degree of the 

augmented plant, and ( )v t  is an arbitrary external bounded input.  

Designing the standard adaptive controller for the augmented minimum phase 

system follows.  In particular, let the filter be chosen as  

 

     
( ) ( )

2 2
0 1

2 2
0 1

10 10( )
10 10FC p

p pp p
ω ω
ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ++ +⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

                           (4.14) 

It is possible to verify that this guarantees stability of the reference model, 

( )
0

max max 1
MAX

yyH j
ω γ γ

ω
≤ ≤

<                                      (4.15) 

where ( )yyH p  is as defined in Chapter III.  Simulation results shown in Figures 4.3–4.5 

show the stability and asymptotic tracking of the desired trajectory. 
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Figure 4.3. Modified Plant Output and Original Plant Output. 
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Figure 4.4. Simulation Result of Modified L1 Adaptive Control System. 
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Figure 4.5. Modified Plant Output Tracks the Reference Output. 

 

C. SIMULATIONS OF MODIFIED L1 ADAPTIVE CONTROL WITH NON-
MINIMUM PHASE SYSTEM 

In order to verify the robustness and stability of the modified L1 adaptive 

controller with PID element, a modified controller is adapted to perform under realistic 

conditions. 

1. Modified L1 Adaptive Control System with Bounded Output 
Disturbance 

Consider a system 

                              
2

0 4 2

( ) 0.06023 0.13378( ) ( ) ( )
( ) 2.57184

B p py t k u t u t
A p p p

+
= =

+
                            (4.16) 
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where 00.5 3k≤ ≤ , assuming 0 1k =  and the reference output 

                                                   1( ) ( ).
1my t v t

p
=

+
                                                       

Then 

    2( ) 0.06023 0.13378B p p= + , 4 2( ) 2.57184A p p p= + , ( ) 1D s p= +                     (4.17) 

This plant has two zeros, one located at (0 + 1.4904i) and the other at (0 - 1.4904i), both 

located on the imaginary axis, and therefore the system is non-minimum phase. 

Next, a proper PID control 1

1

( )
( )

E p
D p

 is defined with 

                                                                      1( )E p p=                                                 (4.18) 

and 

                                                               2
1( ) 10 5 0.1D p p p= + +                                  (4.19) 

It is easy to verify that this controller 1

1

( )
( )

E p
D p

 stabilizes the system.  After the system is 

augmented with 1

1

( )
( )

E p
D p

 , the response is 

5 4 3 2

0 6 5 4 3 2

( ) 0.6023 2.8730 1.3438 0.6689 0.0134( ) ( ) ( ).
( ) 0.5 2.5818 1.2859 0.0257

BB p p p p p py t k u t u t
AA p p p p p p

+ + + + +
= =

+ + + +
     

                                                                                                                                    (4.20) 

Now, the reference model is chosen as 

                                                   1( ) ( )
5my t v t

p
=

+
                                                     (4.21)  

where ( )( ) 5D p p= +  is a Hurwitz polynomial representing the desired closed loop 

dynamics.  The degree of ( )D p  is N M− , which equals the relative degree of the new 

plant, and ( )v t  is an arbitrary external bounded input. 
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 Furthermore, in order to satisfy the stability conditions of Chapter III, 0 30ω =  

rad/sec, 1 30ω =  rad/sec, and 50Eω =  rad/sec are chosen.  Then the LPF becomes 

     
( ) ( )

2 2
0 1

2 2
0 1

30 30( )
30 30FC p

p pp p
ω ω
ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ++ +⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

                           (4.22) 

and 

                      
2

2

50( ) .
( ) ( 50)

L
E

E L
E

C p
p p
ω
ω

= =
+ +

                                              (4.23) 

We can  verify that, with this LPF,  

( )
0

max max 1
MAX

yyH j
ω γ γ

ω
≤ ≤

<                                      (4.24) 

 

and the transfer functions : ( )yyH p , ( )0yH p , ( )0uH p ,  and ( )uyH p  can be obtained 

from Equation (3.42) as before. 

 Figures 4.6–4.9 show the results of this simulation.  From Figure 4.6, it can be 

seen that the augmented plant is stabilized.  In the presence of a bounded output 

disturbance, the settling time is a little longer compared to the example with no 

disturbance in last section.  However, due to the effect of the additional PID element, the 

original output tracks the modified plant output and it is still stable, despite the output 

disturbance.  In addition, from Figures 4.7 and 4.8, it is obvious that this modified L1 

adaptive control system satisfies the specified requirements of this experiment.  It is 

evident that there is no large control action or poor transient performance during the 

duration of execution, and the modified plant output did track the reference output.  

Figure 4.9, shows that the adaptive error is small and bounded, which satisfies the 

requirement of a stable adaptive control system. 
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Figure 4.6. Modified Plant Output and Original Plant Output with Bounded Output 

Disturbance. 
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Figure 4.7. Simulation Result of Modified L1 Adaptive Control System with Bounded 
Output Disturbance. 
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Figure 4.8. Modified Plant Output Tracks the Reference Output with Bounded Output 

Disturbance. 

 

 

0 100 200 300 400 500 600
-10

-5

0

5

10
input u(t) error

sec

0 100 200 300 400 500 600
-0.1

-0.05

0

0.05

0.1
tracking error

sec
 

Figure 4.9. The Adaptive Error of Modified Plant Output with Bounded Output 
Disturbance. 
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2. Modified L1 Adaptive Control System in the Presence of Unmodeled 
Dynamics 

In this case, the same adaptive controller is used as in the previous example, but 

the plant has unmodeled dynamics as represented by 

                                  
2

0 4 2 2

0.06023 0.13378 300( ) ( )
2.57184 10 300
py t k u t

p p p p
+

=
+ + +

                   (4.25) 

where 0 0.1k = , 0 0 00.9* 0.09 1.1* 0.11m Mk k k k k= = ≤ ≤ = =  is assumed.  In addition, 

from Equation (4.25), it has two extra poles affecting the high frequencies only.  In 

general, in this situation, the adaptive controller can easily become unstable and sensitive 

to external disturbances.  Also, the plant has two zeros, one located at (0 + 1.4904i) and 

the other at (0 - 1.4904i), both on the imaginary axis and therefore the system is non-

minimum phase. 

Next, the proper control is defined as 1

1

( )
( )

E p
D p

 , the inverse of a PID control, where 

                                                                      1( )E p p=                                                 (4.26) 

and 

                                                              2
1( ) 10 5 0.1.D p p p= + +                                  (4.27) 

It is easy to verify that this controller 1

1

( )
( )

E p
D p

 stabilizes the system.  After augmenting the 

system with 1

1

( )
( )

E p
D p

 , the response is 

5 4 3 2

0 0 6 5 4 3 2

( ) 0.6023 2.8730 1.3438 0.6689 0.0134( ) ( ) ( ).
( ) 0.5 2.5818 1.2859 0.0257

BB p p p p p py t k u t k u t
AA p p p p p p

+ + + + +
= =

+ + + +
      

                                                                                                                                    (4.28) 

Now, the reference model is chosen as 
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                                                   1( ) ( )
5my t v t

p
=

+
                                                     (4.29)  

with 

                                                   ( ) 5D p p= +                                                              (4.30) 

where ( )( ) 5D p p= +  is a Hurwitz polynomial representing the desired closed loop 

dynamics.  The degree of ( )D p  is N M− , which equals the relative degree of the new 

plant, and ( )v t  is an arbitrary external bounded input.  

 Furthermore, in order to satisfy the stability conditions of Chapter III, 0 30ω =  

rad/sec, 1 30ω =  rad/sec, and 50Eω =  rad/sec are chosen. Then the LPF becomes 

 

     
( ) ( )

2 2
0 1

2 2
0 1

30 30( )
30 30FC p

p pp p
ω ω
ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ++ +⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

                           (4.31) 

and 

                      
2

2

50( )
( ) ( 50)

L
E

E L
E

C p
p p
ω
ω

= =
+ +

                                               (4.32) 

 

It is easy to verify that, with this LPF,  

 

( )
0

max max 1
MAX

yyH j
ω γ γ

ω
≤ ≤

<                                    (4.33) 

 

and the transfer functions : ( )yyH p , ( )0yH p , ( )0uH p , and ( )uyH p  can be easily 

obtained from Equation (3.42).  

Figures 4.10–4.12 show the simulation results of this experiment. From Figure 

4.10 and Figure 4.11 it is obvious that this modified L1 adaptive control system satisfies 
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the specified requirement.  It is evident that there is no large control action or poor 

transient performance during the duration of execution, and the modified plant output did 

track the reference output.  In Figure 4.12, the adaptive error is shown and is small and 

bounded, which satisfies the requirement of a stable adaptive control system.  
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Figure 4.10. Simulation Result of Modified  L1 Adaptive Control System with 

Unmodeled Dynamics 2
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Figure 4.11. Modified Plant Output Tracks the Reference Output with Unmodeled 

Dynamics 2
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Figure 4.12. The Adaptive Error of a Modified Plant Output with Unmodeled 

Dynamics 2
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D. APPLICATION TO A SATELLITEWITH A FLEXIBLE ARM  

In this section, the problem of applying the proposed adaptive controller to the 

control of a flexible arm is addressed.  This is part of the equipment available in the 

Satellite Research and Design Center (SRDC) at the Naval Postgraduate School.  The 

SRDC aims to recreate realistic space conditions in a laboratory environment.  

The particular equipment used in this experiment is the Flexible Spacecraft 

Simulator (FSS) shown in Figure 4.13.  The FSS simulates a flexible arm moving in the 

plane.  

 

 

 
Figure 4.13. Flexible Spacecraft Simulator (FSS). 
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It was developed to experimentally verify the effectiveness, robustness and stability of 

designed control laws.  It is comprised of a rigid central body and a flexible appendage.  

The rigid central body represents the main body of the spacecraft, and the flexible 

appendage represents a flexible antenna support structure [91].  In addition, the flexible 

appendage is composed of a based beam cantilevered to the main body and tip beam 

rigidly connected to the base beam at a right angle.  Five air pads on a granite table 

support the FSS and its flexible appendage to minimize friction during motion. 

The flexible model is similar to the mass-spring-damping model.  Based on 

experimental, real data from FSS, the equations of motion of the flexible model can be 

developed and are written as 

 

                                               { } { } 1M x K x B u+ =                                                       (4.34) 

and 

            
19.2253 1.6190

1.6190 1
M

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 ,
0 0
0 2.2212

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 , 1

0
1

B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 , and x
q
θ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

where θ  is the angle of the spacecraft hub in radians and q  is a state variable 

representing appendage deformation using modal coordinates.  From Equation (4.34), the 

state space dynamics are derived and are written as 

 

                                          
( ) ( ) ( )

( ) ( )
p p

p

x t A x t B u t

y t C x t

= +

=
 

where 

                               

0 0 1 0
0 0 0 1
0 2.166 0 0
0 2.5718 0 0

pA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 , 
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0
0

0.06023
0.09751

pB

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,  

and 

                                        [ ]1 0 0 0pC =  

where ( ) ( )y t tθ=  is the measured angular position. 

With appropriate substitutions, the transfer function of the plant becomes 

                           
2

4 2

( ) 0.06023 0.13378( ) ( ) ( )
( ) 2.57184

B p py t u t u t
A p p p

+
= =

+
                                   (4.35) 

It can be seen that, this flexible model has two non-minimum phase zeros located on the 

imaginary axis.  The root locus plot of this plant is shown in Figure 4.14. 
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Figure 4.14. The Root Locus Plot of the Non-minimum System 
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It can also be verified that the PID controller with transfer function 

                                               
2

1

1

( ) 10 5 0.1
( )

D p p p
E p p

+ +
=                                                (4.36) 

stabilizes the system. Also, it provides sufficient margin so that parameter perturbations 

do not affect the stability.  Then, the nominal augmented system is 

                                          1
0

1

( )( )( ) ( )
( ) ( )

E pB py t k u t
A p D p

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

                                           (4.37) 

and becomes 

5 4 3 2

0 6 5 4 3 2

( ) 0.6023 2.8730 1.3438 0.6689 0.0134( ) ( ) ( )
( ) 0.5 2.5818 1.2859 0.0257

BB p p p p p py t k u t u t
AA p p p p p p

+ + + + +
= =

+ + + +
      

                                                                                                                                      (4.38) 

where 0 1k =  and 0 0.1k = . 

Since the relative degree is 1N M− = , the reference model is chosen as  

                                                   1( ) ( )
5my t v t

p
=

+
                                                      (4.39)  

with ( )v t  representing an arbitrary external input.  It can be easily verified that the 

augmented system is minimum phase, and can be adaptively controlled to follow the 

trajectory of the reference model of Equation (4.39). 

Proceeding as in the previous chapter, we choose the filters ( )FC s  and ( )EC s  for 

the purposes of control and adaptation.  With 0 30ω =  rad/sec, 1 30ω =  rad/sec, and 

50Eω =  rad/sec chosen, the LPF becomes 

     
( ) ( )

2 2
0 1

2 2
0 1

30 30( )
30 30FC p

p pp p
ω ω
ω ω

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ++ +⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

                           (4.40) 

and 
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2

2

50( ) .
( ) ( 50)

L
E

E L
E

C p
p p
ω
ω

= =
+ +

                                             (4.41) 

From the plot of ( )yyH jω  in Figure 4.15, it can be see that the magnitude is 

always smaller than “one”, thus guaranteeing stability of the transfer functions : ( )yyH p , 

( )0yH p , ( )0uH p , and ( )uyH p  in Equation (3.42). 
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Figure 4.15. The Plot of the ( )yyH jω . 

 

Figures 4.16 and 4.17 show the results of this experiment.  Figure 4.16 shows the 

trajectories of the reference model, original model, and the modified plant.  Figure 4.17 

shows the results of control input, reference output, modified plant output, and original 

plant output, respectively.  From these figures, it can be seen that the modified plant with 

PID control results in the plant becoming stable.  Comparing the figure of the reference 
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output, it is evident that the modified output after adding the PID does track the trajectory 

of the reference model.  In addition, no large control action or poor transient performance 

is exhibited during the entire execution period.  This result validates that the modified 

adaptive controller with PID design does solve the flexible problems in non-minimum 

phase systems.  This is the reason that such a controller is implemented in this 

experimental adaptive system.  

0 50 100 150 200 250 300 350 400 450 500
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 

 reference output
original plant output
modified plant output

 
Figure 4.16. Trajectories of the Reference Model, Original Plant, and Modified Plant 

with Modified L1 Adaptive Controller and FSS. 
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Figure 4.17. Experimental Results with Modified L1 Adaptive Controller and FSS. 

 

 



 83

V. CONCLUSIONS  

A. SUMMARY AND CONTRIBUTIONS 

In this dissertation, an Adaptive Control system has been redesigned for Single 

Input Single Output (SISO) systems to improve both transient response and robustness to 

external disturbances and unmodeled dynamics.  In particular, it was shown how two 

properly designed filters, one in the control loop and one in the parameter estimation block, 

yield a transient response due to adaptation with an arbitrarily small maximum norm.  Also, 

based on a number of simulations, it was verified that the system remained stable in the 

presence of external disturbances and unmodeled dynamics.  

This approach was extended to non-minimum phase systems by assuming some 

stability conditions using a non-proper compensator, such as a PID controller.  In the latter 

case, the effectiveness of this approach was demonstrated by application to a system with 

flexibilities, having a non-minimum phase transfer function. 

The contributions in this dissertation are as follows:  

1. For minimum phase, SISO systems global stability has been established 
together with criteria on the choice of the various filter parameters. Also, 
upper bounds of the transient response due to adaptation have been 
computed and shown how they are affected by the filters’ bandwidths; 

2. For non-minimum phase systems, we have shown that the use of an 
augmenting system in parallel with the plant makes the overall system 
minimum phase, so that the Adaptive Controller can be applied. The 
criterion of choosing the augmenting network is by the inverse of a PID 
controller, which stabilizes the plant. Although the PID controller has a non-
proper transfer function due to the derivative action, its inverse is proper 
thus easily implementable in the presence of additive disturbances.  The 
augmenting network is chosen so that it has no effect in steady state, only 
during the transient response of the system; 

3. Application to a very lightly damped flexible system with two degrees of 
freedom on a plane shows the effectiveness of this approach in an actual 
implementation. 
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B. FURTHER WORK 

The study in this dissertation presents a preliminary investigation on an Adaptive 

Control system with the intent of making it attractive to engineering problems. There are 

still a number of issues that need to be addressed, namely: 

1. Robustness in the presence of external disturbances and unmodeled 
dynamics. Although simulation results show that this controller still keeps 
its stability properties with modeling errors, a need to establish how mush 
uncertainties can be tolerated while still guarantee stability has to be 
addressed. In particular the claim of arbitrarily small transient errors due to 
adaptation has to be reformulated to take modeling errors into account. The 
expected final result will be a usual tradeoff between performance and 
robustness; 

2. The extension of this algorithm to non-minimum phase systems seems to be 
very important in view of the fact that systems with lightly damped 
flexibilities are very hard to control. The algorithm presented assumes that a 
stabilizing non-proper controller (such the PID) is known to the designer. 
The issue to be further investigated is the best way of determining this 
stabilizing controller, in view of the given uncertainties of the system to be 
controlled. From an engineering standpoint this would correspond to the 
combination of two controllers: a standard fixed PID control just to stabilize 
the system and the adaptive controller to improve its dynamic performance. 
These two controllers (fixed and adaptive) interact with each other, but their 
effects on the system performance and robustness need to be further 
investigated; 

3. Finally most systems of interest have Multiple Inputs and Multiple Outputs 
(MIMO). This is the case of the flexible arm presented in the last section: 
extension to an actual implementation in space would require dynamics in 
all three dimensions with actuators in all three axes. For this sort of 
problems there are two possible ways of extending the theory and design. 
One way is to take the whole dynamics of the system into account and 
extend the SISO approach to MIMO. Along these lines a considerable 
amount of work has been done for standard Adaptive Control systems and it 
can be extended to the L1 approach. However in some cases as in the 
flexible arm in space, the MIMO system can be modeled as a set of SISO 
systems with cross coupling dynamics. In this case it might be easier to 
design separate independent SISO controllers and treat the cross couplings 
as disturbances. In this way, if the SISO controllers have sufficient degree 
of robustness the overall system will still be stable. These show important 
tradeoffs of this class of design. 
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APPENDIX A. 

Equation (3.31) can be written as 
 
 

( )2 2 2 22 2

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

i i
i i

E E

X t X tt e t t e t
w t X t w t X t

θ μ μ μ
σ σ

= − + −
+ +

                  (A.1) 

 
where ( ) 0i tμ μ− > . 
 
 
Define the positive define function  
 

                                                          1( ( )) ( ) ( )
2

V t t tθ θ θ= i                                            (A.2) 

 
then  
                                                           ( ( )) ( ) ( )TV t t tθ θ θ= i                                            (A.3) 
 
and 
 

 ( )
2

2 2 2 22 2
0

( )( ) ( )( ( )) ( ) ( ) ( ).
( ) ( ) ( ) ( )

T N
i

i
iE E

X tt X tV t e t t e t
w t X t w t X t
θθ μ μ μ

σ σ=

= − + −
+ +

∑        (A.4) 

 
The rightmost term is nonzero only when 
 
       ,max( ) 0i itθ θ θ= − ≤  and ( ) ( ) 0iX t e t >                                                                    (A.5) 
                                                      
       or 
 
      ,min( ) 0i itθ θ θ= − ≥  and ( ) ( ) 0iX t e t <  
 
which makes it always non-positive. 
Substituting for the error term ( ) ( ) ( ) ( )T

Ee t t X t w tθ= +  the following expression is 
obtained 
 

                 ( )
2

22 1 1( ( )) ( ) ( ) ( ) ( ) ( ) ( )
2 4

V t t t t t t tθ μ ε ε η μ ε η η≤ − + = − + +                     (A.6) 
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where 
 

               
2 22

( ) ( )( )
( ) ( )

T

E

t X tt
w t X t

θε
σ

=
+

                                                                       (A.7) 

 

              
2 2 2 22 2

( ) ( ) ( )( ) . ( )
( ) ( ) ( ) ( )

T
E

E E

w t t X tt t
w t X t w t X t

θη ε
σ σ

= =
+ +

 

 
Now, with any t, T > 0 and integrating Equation (A.6) between t and t+T 
 

                    
2

210 ( ( )) ( ( )) ( ) ( ) ( )
2 4

t T t T

t t

V t T V t d dμθ θ μ ε τ η τ τ η τ τ
+ +

≤ + ≤ − + +∫ ∫          (A.8) 

 
yields 
 

                                    
2

2
2( )1( ) ( ) ( ) .

2 2 4

t T t T

t t

t
d d

θ με τ η τ τ η τ τ
μ

+ +

+ ≤ +∫ ∫                        (A.9) 

Definition of ( )tη  in Equation (A.7) yields the upper bound on the rightmost term as 
 
                                                                   0    if ( ) 0Ew τ =  for all τ                         (A.10) 
 
 

( ) 2
2

22
( )

( )

t T t T
E

t t E

w
d d

w

τ
η τ τ τ

σ τ

+ +

≤ ≤∫ ∫         

                                                                  2

T
σ

otherwise.                                                                                     

 
                                   
The final results become 
 

a. Equation (3.33a), come easily since the initial estimates are within the 
bounds 

 

,min ,
ˆ( )i i MAXtθ θ θ≤ ≤  , and  

 

                                  ,

,

ˆ ˆ( ) ( ) 0

ˆ ˆ( ) ( ) 0

i i MAX i

i i m i

t t

t t

θ θ θ

θ θ θ

≥ ⇒ ≤

≤ ⇒ ≥
                                              (A.11) 
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b. From the definition of ( )tε  in Equation (A.7) 
 

                      ( )
1

2 22 2( ) ( ) ( ) ( ) ( )T
Et X t t w t X tθ ε σ≤ +                                (A.12) 

 
where we can bound 
 

( )
1 1

1 2 22 2
2 2 1 1( ) ( ) ( ) ( )

2 2
t T t T t T

t t t
d d dε τ τ ε τ η τ τ η τ τ

+ + +⎛ ⎞ ⎛ ⎞
≤ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫                (A.13) 

 

Finally, combining Equations (A.9), (A.12), and (A.13) yields Equation (3.33b) 

with bound Equation (3.34). 

 
c. Since  

 

( )
2 2 22

2 2
2 2 222 22

( ) ( ) ( )
( )

( ) ( )( ) ( ) EE

X t e t e t
t

w t X tw t X t
θ μ μ

σσ
≤ ≤

++
                   (A.14) 

 
 
and substituting for ( ) ( ) ( ) ( )T

Ee t t X t w tθ= +  yields 
 
 

2 22

( ) 1 1( ) ( ) ( ) ( ) ( )
2 2( ) ( )E

e t t t t t t
w t X t

ε η ε η η
σ

⎛ ⎞= + = + +⎜ ⎟
⎝ ⎠+

                     (A.15) 

 
 
This expression has the same upper bound as Equation (A.13) so that Equation (3.33c) 

follows easily with bound again of Equation (3.34) 

 
                                                                                                                                  QED 
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APPENDIX B.  

Proof:  From Equation (3.20), the expression for the plant output ( )y t  is  
  

            0
1( ) ( ( ) ( ) ( ) ( ) ( )) ( ).
( )

T T
m m u yy t k u t k k u t h t k t w t

D p
φ φ= + − + + +                          (B.1) 

 
 

Combining Equations (3.21), (3.22), and (3.23), and rearranging Equation (3.20) as 
follows yields 
 

( ) 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ).T
mt D p y t w t k k u t k u tθ φ = − + − −                              (B.2) 

 
 
From Equation (3.1) 
 

( )0
( )( ) ( ) ( ) .
( )

A pk u t y t w t
B p

= −                                                   (B.3) 

 
 

Substituting Equation (B.3) into Equation (B.2) results in 
 

        0 0
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).
( ) ( )

T
m

A p A pt D p y t D p w t k k u t y t w t
B p B p

θ φ = − + − − +               (B.4) 

 
hen 
 

  0 0
( ) ( )( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ).

( ) ( ) ( )
T

m
A p A pt D p y t k k u t D p w t w t

B p D p B p
θ φ

⎛ ⎞
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⎝ ⎠
             (B.5) 

 
Substituting Equation (B.5) into Equation (B.2) yields 
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F
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D p B p D p
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        ( ) ( ) ( )
0 0
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F F

m F
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                                                                                                                                         (B.6) 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )
( ) ( )

T
m F F

A pk u t C p t t v t C p D p y t
B p D p

θ φ
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               0 0
( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ).
( )F m F F

A pC p k k u t C p D p w t C p w t
B p

− − + −                           (B.7) 

 
Equation (B.6) can be adjusted as 
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                                                   (B.8) 

 
and finally 
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                                       (B.9) 

 
Then ( )mk u t  is isolated: 
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( ) 0
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F
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                                                       (B.10) 

 
Substituting ( )mk u t  from Equation (B.10) into Equation (B.8), results in the proof of 
Equations (3.41) and (3.42). 
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                                                                                                       (3.42) 

and 0 1
m

k
k

γ = −  in the interval 0 1M
MAX

m

k
k

γ γ≤ ≤ = − . 

                                                                                                                                      QED 
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APPENDIX C.  

Let  
a. ( )EC p  be the transfer function of an exponentially stable, causal Linear Time 

Invariant (LTI) system,  
b. ( ) Nt Rθ ∈  be a bounded vector 
c. ( ) Nt Rφ ∈  , ( )e t R∈  be the input and output of the following Linear Time Varying 

operator 
 
                     ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )T T

E Ee t C p t t t C p tθ φ θ φ= −                                 (C.1) 

 
then 
 

                             
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

T T
E Ee t c t d c t t dτ θ τ φ τ τ τ θ φ τ τ= − − −∫ ∫                     (C.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.1. Region of Integration for Equation (C.2). 
 
 
 
 

t  

τ  

λ  
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Since  

                                                  
0

( ) (0) ( )
t

t dθ θ θ λ λ= + ∫                                                 (C.3) 

 
Substituting Equation (C.3) into Equation (C.2) yields 
 

                                            
0

( ) ( ) ( ) ( )
t t

Ee t c t d d
τ

τ θ λ φ τ λ τ= − −∫ ∫                                    (C.4) 

 
It is easy to see from Figure C.1 that the region of integration can be expressed as 
 

                                                             
0
0

tλ
τ λ

≤ ≤
≤ ≤

                                                           (C.5) 

 
which yields  
 

                                            
0 0

( ) ( ) ( ) ( )
t

T
Ee t c t d d

λ

θ λ τ φ τ τ λ= − −∫ ∫                                   (C.6) 

 
A simple change of integration variables yields the result. 
 
                                                                                                                                      QED 
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